skip to main content


Title: Learning Memory-Based Control for Human-Scale Bipedal Locomotion
Controlling a non-statically stable biped is a difficult problem largely due to the complex hybrid dynamics involved. Recent work has demonstrated the effectiveness of reinforcement learning (RL) for simulation-based training of neural network controllers that successfully transfer to real bipeds. The existing work, however, has primarily used simple memoryless network architectures, even though more sophisticated architectures, such as those including memory, often yield superior performance in other RL domains. In this work, we consider recurrent neural networks (RNNs) for sim-to-real biped locomotion, allowing for policies that learn to use internal memory to model important physical properties. We show that while RNNs are able to significantly outperform memoryless policies in simulation, they do not exhibit superior behavior on the real biped due to overfitting to the simulation physics unless trained using dynamics randomization to prevent overfitting; this leads to consistently better sim-to-real transfer. We also show that RNNs could use their learned memory states to perform online system identification by encoding parameters of the dynamics into memory.  more » « less
Award ID(s):
1849343
NSF-PAR ID:
10214695
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Robotics science and systems
ISSN:
2330-7668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing approaches for autonomous control of pan-tilt-zoom (PTZ) cameras use multiple stages where object detection and localization are performed separately from the control of the PTZ mechanisms. These approaches require manual labels and suffer from performance bottlenecks due to error propagation across the multi-stage flow of information. The large size of object detection neural networks also makes prior solutions infeasible for real-time deployment in resource-constrained devices. We present an end-to-end deep reinforcement learning (RL) solution called Eagle1 to train a neural network policy that directly takes images as input to control the PTZ camera. Training reinforcement learning is cumbersome in the real world due to labeling effort, runtime environment stochasticity, and fragile experimental setups. We introduce a photo-realistic simulation framework for training and evaluation of PTZ camera control policies. Eagle achieves superior camera control performance by maintaining the object of interest close to the center of captured images at high resolution and has up to 17% more tracking duration than the state-of-the-art. Eagle policies are lightweight (90x fewer parameters than Yolo5s) and can run on embedded camera platforms such as Raspberry PI (33 FPS) and Jetson Nano (38 FPS), facilitating real-time PTZ tracking for resource-constrained environments. With domain randomization, Eagle policies trained in our simulator can be transferred directly to real-world scenarios2. 
    more » « less
  2. Abstract Background Few studies have systematically investigated robust controllers for lower limb rehabilitation exoskeletons (LLREs) that can safely and effectively assist users with a variety of neuromuscular disorders to walk with full autonomy. One of the key challenges for developing such a robust controller is to handle different degrees of uncertain human-exoskeleton interaction forces from the patients. Consequently, conventional walking controllers either are patient-condition specific or involve tuning of many control parameters, which could behave unreliably and even fail to maintain balance. Methods We present a novel, deep neural network, reinforcement learning-based robust controller for a LLRE based on a decoupled offline human-exoskeleton simulation training with three independent networks, which aims to provide reliable walking assistance against various and uncertain human-exoskeleton interaction forces. The exoskeleton controller is driven by a neural network control policy that acts on a stream of the LLRE’s proprioceptive signals, including joint kinematic states, and subsequently predicts real-time position control targets for the actuated joints. To handle uncertain human interaction forces, the control policy is trained intentionally with an integrated human musculoskeletal model and realistic human-exoskeleton interaction forces. Two other neural networks are connected with the control policy network to predict the interaction forces and muscle coordination. To further increase the robustness of the control policy to different human conditions, we employ domain randomization during training that includes not only randomization of exoskeleton dynamics properties but, more importantly, randomization of human muscle strength to simulate the variability of the patient’s disability. Through this decoupled deep reinforcement learning framework, the trained controller of LLREs is able to provide reliable walking assistance to patients with different degrees of neuromuscular disorders without any control parameter tuning. Results and conclusion A universal, RL-based walking controller is trained and virtually tested on a LLRE system to verify its effectiveness and robustness in assisting users with different disabilities such as passive muscles (quadriplegic), muscle weakness, or hemiplegic conditions without any control parameter tuning. Analysis of the RMSE for joint tracking, CoP-based stability, and gait symmetry shows the effectiveness of the controller. An ablation study also demonstrates the strong robustness of the control policy under large exoskeleton dynamic property ranges and various human-exoskeleton interaction forces. The decoupled network structure allows us to isolate the LLRE control policy network for testing and sim-to-real transfer since it uses only proprioception information of the LLRE (joint sensory state) as the input. Furthermore, the controller is shown to be able to handle different patient conditions without the need for patient-specific control parameter tuning. 
    more » « less
  3. The development of data-informed predictive models for dynamical systems is of widespread interest in many disciplines. We present a unifying framework for blending mechanistic and machine-learning approaches to identify dynamical systems from noisily and partially observed data. We compare pure data-driven learning with hybrid models which incorporate imperfect domain knowledge, referring to the discrepancy between an assumed truth model and the imperfect mechanistic model as model error. Our formulation is agnostic to the chosen machine learning model, is presented in both continuous- and discrete-time settings, and is compatible both with model errors that exhibit substantial memory and errors that are memoryless. First, we study memoryless linear (w.r.t. parametric-dependence) model error from a learning theory perspective, defining excess risk and generalization error. For ergodic continuous-time systems, we prove that both excess risk and generalization error are bounded above by terms that diminish with the square-root of T T , the time-interval over which training data is specified. Secondly, we study scenarios that benefit from modeling with memory, proving universal approximation theorems for two classes of continuous-time recurrent neural networks (RNNs): both can learn memory-dependent model error, assuming that it is governed by a finite-dimensional hidden variable and that, together, the observed and hidden variables form a continuous-time Markovian system. In addition, we connect one class of RNNs to reservoir computing, thereby relating learning of memory-dependent error to recent work on supervised learning between Banach spaces using random features. Numerical results are presented (Lorenz ’63, Lorenz ’96 Multiscale systems) to compare purely data-driven and hybrid approaches, finding hybrid methods less datahungry and more parametrically efficient. We also find that, while a continuous-time framing allows for robustness to irregular sampling and desirable domain- interpretability, a discrete-time framing can provide similar or better predictive performance, especially when data are undersampled and the vector field defining the true dynamics cannot be identified. Finally, we demonstrate numerically how data assimilation can be leveraged to learn hidden dynamics from noisy, partially-observed data, and illustrate challenges in representing memory by this approach, and in the training of such models. 
    more » « less
  4. Abstract

    Recurrent neural networks (RNNs) are often used to model circuits in the brain and can solve a variety of difficult computational problems requiring memory, error correction, or selection (Hopfield, 1982; Maass et al., 2002; Maass, 2011). However, fully connected RNNs contrast structurally with their biological counterparts, which are extremely sparse (about 0.1%). Motivated by the neocortex, where neural connectivity is constrained by physical distance along cortical sheets and other synaptic wiring costs, we introduce locality masked RNNs (LM-RNNs) that use task-agnostic predetermined graphs with sparsity as low as 4%. We study LM-RNNs in a multitask learning setting relevant to cognitive systems neuroscience with a commonly used set of tasks, 20-Cog-tasks (Yang et al., 2019). We show through reductio ad absurdum that 20-Cog-tasks can be solved by a small pool of separated autapses that we can mechanistically analyze and understand. Thus, these tasks fall short of the goal of inducing complex recurrent dynamics and modular structure in RNNs. We next contribute a new cognitive multitask battery, Mod-Cog, consisting of up to 132 tasks that expands by about seven-fold the number of tasks and task complexity of 20-Cog-tasks. Importantly, while autapses can solve the simple 20-Cog-tasks, the expanded task set requires richer neural architectures and continuous attractor dynamics. On these tasks, we show that LM-RNNs with an optimal sparsity result in faster training and better data efficiency than fully connected networks.

     
    more » « less
  5. Bouajjani, A. ; Holík, L. ; Wu, Z. (Ed.)
    The expanding role of reinforcement learning (RL) in safety-critical system design has promoted omega-automata as a way to express learning requirements—often non-Markovian—with greater ease of expression and interpretation than scalar reward signals. When 𝜔-automata were first proposed in model-free RL, deterministic Rabin acceptance conditions were used in an attempt to provide a direct translation from omega-automata to finite state “reward” machines defined over the same automaton structure (a memoryless reward translation). While these initial attempts to provide faithful, memoryless reward translations for Rabin acceptance conditions remained unsuccessful, translations were discovered for other acceptance conditions such as suitable, limit-deterministic Buechi acceptance or more generally, good-for-MDP Buechi acceptance conditions. Yet, the question “whether a memoryless translation of Rabin conditions to scalar rewards exists” remained unresolved. This paper presents an impossibility result implying that any attempt to use Rabin automata directly (without extra memory) for model-free RL is bound to fail. To establish this result, we show a link between a class of automata enabling memoryless reward translation to closure properties of its accepting and rejecting infinity sets, and to the insight that both the property and its complement need to allow for positional strategies for such an approach to work. We believe that such impossibility results will provide foundations for the application of RL to safety-critical systems. 
    more » « less