Abstract We present a comparison of the measured cosmic ray (CR) muon fluxes from two identical portable low‐cost detectors at different geolocations and their sensitivity to space weather events in real time. The first detector is installed at Mount Wilson Observatory, CA, USA (geomagnetic cutoff rigidity Rc ∼ 4.88 GV), and the second detector is running on the downtown campus of Georgia State University in Atlanta, GA, USA (Rc ∼ 3.65 GV). The variation of the detected muon fluxes is compared to the changes in the interplanetary solar wind parameters at the L1 Lagrange point and geomagnetic indexes. In particular, we have investigated the muon flux behavior during three major interplanetary shock events and geomagnetic disturbances that occurred during July and August of 2022. To validate the interpretation of the measured muon signals, we compare the muon fluxes to the measurement from the Oulu neutron monitor (NM, Rc ∼ 0.8 GV). The results of this analysis show that the muon detector installed at Mount Wilson Observatory demonstrates a stronger correlation with a high‐latitude NM. Both detectors typically observe a muon flux decrease during the arrival of interplanetary shocks and geomagnetic storms. Interestingly, the decrease could be observed several hours before the onset of the first considered interplanetary shocks at L1 at 2022‐07‐23 02:28:00 UT driven by the high‐speed Coronal Mass Ejection and related geomagnetic storm at 2022‐07‐23 03:59:00 UT. This effort represents an initial step toward establishing a global network of portable low‐cost CR muon detectors for monitoring the sensitivity of muon flux changes to space and terrestrial weather parameters.
more »
« less
A Comparison of Low-Cost Collector Configurations for Quantifying Ice Accretion
Abstract Ice storms are important winter weather events that can have substantial environmental, economic, and social impacts. Mapping and assessment of damage after these events could be improved by making ice accretion measurements at a greater number of sites than is currently available. There is a need for low-cost collectors that can be distributed broadly in volunteer observation networks; however, use of low-cost collectors necessitates understanding of how collector characteristics and configurations influence measurements of ice accretion. A study was conducted at the Hubbard Brook Experimental Forest in New Hampshire that involved spraying water over passive ice collectors during freezing conditions to simulate ice storms of different intensity. The collectors consisted of plates composed of four different materials and installed horizontally; two different types of wires strung horizontally; and rods of three different materials, with three different diameters, and installed at three different inclinations. Results showed that planar ice thickness on plates was 2.5–3 times as great as the radial ice thickness on rods or wires, which is consistent with expectations based on theory and empirical evidence from previous studies. Rods mounted on an angle rather than horizontally reduced the formation of icicles and enabled more consistent measurements. Results such as these provide much needed information for comparing ice accretion data. Understanding of relationships among collector configurations could be refined further by collecting data from natural ice storms under a broader range of weather conditions.
more »
« less
- Award ID(s):
- 1637685
- PAR ID:
- 10214822
- Date Published:
- Journal Name:
- Journal of Applied Meteorology and Climatology
- Volume:
- 59
- Issue:
- 9
- ISSN:
- 1558-8424
- Page Range / eLocation ID:
- 1429 to 1442
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Coarse Woody Debris of the Ice Storm Experiment (ISE) plots at the Hubbard Brook Experimental ForestThe ice storm experiment was a novel experimental approach creating a suite of ice storms in a mature hardwood forest in New Hampshire, USA. The experiment included five ice storm intensities (0, 6.4, 12.7, and 19.1 mm radial ice accretion) applied in a single year, and one ice storm intensity (12.7 mm) applied in two consecutive years. This dataset quantifies the coarse woody debris transferred from the forest canopy to the soil under the different icing conditions. In this forest, little damage occurred below 6.4 mm radial ice accretion, moderate damage occurred with up to 12.7 mm of accretion, and significant branch breakage and canopy damage occurred with 19.1 mm of ice. The icing in consecutive years demonstrated an interactive effect of ice storm frequency and severity such that some branches damaged in the first year of icing appeared to remain in the canopy and then fall to the ground in the second year of icing. These results have implications for National Weather Service ice storm warning levels, and they provide a quantitative assessment of ice-load related inputs of forest debris that will be useful to municipalities creating response plans for current and future ice storms. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
Abstract An ice storm simulation was performed at the Hubbard Brook Experimental Forest to evaluate impacts of these extreme weather events on northern hardwood forests. Water was pumped from the main branch of Hubbard Brook and sprayed above the forest canopy in subfreezing conditions so that it rained down and froze on contact with trees. The experiment consisted of five treatments, including a control (no ice) and three target levels of radial ice accretion: low (6.4 mm), mid (12.7 mm), and high (19.0 mm). Two of the mid-level treatment plots (midx2) were iced in back-to-back years to evaluate impacts of consecutive storms. This dataset consists of hemispherical photographs of the forest canopy with leaves on and off the trees before and after the various ice treatments. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
This dataset contains weights of windblown dust collected by BSNE collectors at long-term observation plots that are part of the Jornada Basin LTER Cross-Scale Interaction Study (CSIS) located at the Jornada Experimental Range. There are 15 experimental blocks (or sites) in this study. Within each block, there are 4 plots with different experimental treatments: 1 control, 1 with mesquite herbicide applied, 1 with connectivity modifiers (Conmods) installed, and 1 with Conmods AND mesquite herbicide applied. The intent of Conmods is to decrease gap size between perennial vegetation. The plots are 8 x 8 meters and have an 8 x 8 meter buffer zone on both the upwind and downwind sides of the plot. There are two BSNE (aeolian dust collector) stands per experimental plot positioned at the edge of the upwind and downwind 8m x 8m buffers. Each stand has 3 collectors positioned at heights of 10 cm, 30 cm, and 50 cm, and all collector openings face the prevailing wind direction. Upwind BSNEs collected the amount of dust entering the plot, and the downwind BSNEs collected the amount of dust moving off the plot. These collectors estimate the effectiveness of the plot surface in obstructing wind blown dust. This study is ongoing with data collected quarterly each year.more » « less
-
Summary Natural history collections (NHCs) are essential for studying biodiversity. Although spatial, temporal, and taxonomic biases in NHCs affect analyses, the influence of collector practices on biases remains largely unexplored.We utilized one million digitized specimens collected in the northeastern United States byc.10 000 collectors to investigate how collector practices shape spatial, temporal, and taxonomic biases in NHCs; and similarities and differences between practices of more‐ and less‐prolific collectors.We identified six common collector practices, or collection norms: collectors generally collected different species, from multiple locations, from sites sampled by others, during the principal growing season, species identifiable outside peak collecting months, and species from species‐poor families and genera. Some norms changed over decades, with different taxa favored during different periods. Collection norms have increased taxonomic coverage in NHCs; however, collectors typically avoided large, taxonomically complex groups, causing their underrepresentation in NHCs. Less‐prolific collectors greatly enhanced coverage by collecting during more months and from less‐sampled locations.We assert that overall collection biases are shaped by shared predictable collection norms rather than random practices of individual collectors. Predictable biases offer an opportunity to more effectively address biases in future biodiversity models.more » « less
An official website of the United States government

