skip to main content

Title: Kinetic and metabolic isotope effects in coral skeletal carbon isotopes: A re-evaluation using experimental coral bleaching as a case study
Award ID(s):
0542415 0610487 0825490
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geochimica et Cosmochimica Acta
Page Range / eLocation ID:
164 to 178
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ocean acidification (OA) is negatively affecting calcification in a wide variety of marine organisms. These effects are acute for many tropical scleractinian corals under short-term experimental conditions, but it is unclear how these effects interact with ecological processes, such as competition for space, to impact coral communities over multiple years. This study sought to test the use of individual-based models (IBMs) as a tool to scale up the effects of OA recorded in short-term studies to community-scale impacts, combining data from field surveys and mesocosm experiments to parameterize an IBM of coral community recovery on the fore reef of Moorea, French Polynesia. Focusing on the dominant coral genera from the fore reef, Pocillopora , Acropora , Montipora and Porites , model efficacy first was evaluated through the comparison of simulated and empirical dynamics from 2010–2016, when the reef was recovering from sequential acute disturbances (a crown-of-thorns seastar outbreak followed by a cyclone) that reduced coral cover to ~0% by 2010. The model then was used to evaluate how the effects of OA (1,100–1,200 µatm pCO 2 ) on coral growth and competition among corals affected recovery rates (as assessed by changes in % cover y −1 ) of each coral population between 2010–2016. The model indicated that recovery rates for the fore reef community was halved by OA over 7 years, with cover increasing at 11% y −1 under ambient conditions and 4.8% y −1 under OA conditions. However, when OA was implemented to affect coral growth and not competition among corals, coral community recovery increased to 7.2% y −1 , highlighting mechanisms other than growth suppression (i.e., competition), through which OA can impact recovery. Our study reveals the potential for IBMs to assess the impacts of OA on coral communities at temporal and spatial scales beyond the capabilities of experimental studies, but this potential will not be realized unless empirical analyses address a wider variety of response variables representing ecological, physiological and functional domains. 
    more » « less
  2. Scleractinian corals are bathed in a sea of planktonic and particle-associated microorganisms. The metabolic products of corals influence the growth and composition of microorganisms, but interactions between corals and seawater microorganisms are underexplored. We conducted a field-based survey to compare the biomass, diversity, composition, and functional capacity of microorganisms in small-volume seawater samples collected adjacent to five coral species with seawater collected > 1 m away from the reef substrate on the same reefs. Seawater collected close to corals generally harbored copiotrophic-type bacteria and its bacterial and archaeal composition was influenced by coral species as well as the local reef environment. Trends in picoplankton abundances were variable and either increased or decreased away from coral colonies based on coral species and picoplankton functional group. Genes characteristic of surface-attached and potentially virulent microbial lifestyles were enriched in near coral seawater compared to reef seawater. There was a prominent association between the coral Porites astreoides and the coral symbiont Endozoicomonas, suggesting recruitment and/or shedding of these cells into the surrounding seawater. This evidence extends our understanding of potential species-specific and reef site-influenced microbial interactions that occur between corals and microorganisms within this near-coral seawater environment that we propose to call the “coral ecosphere.” Microbial interactions that occur within the coral ecosphere could influence recruitment of coral-associated microorganisms and facilitate the transfer of coral metabolites into the microbial food web, thus fostering reef biogeochemical cycling and a linkage between corals and the water column. 
    more » « less
  3. Caroselli, Erik (Ed.)
    The North Atlantic Oscillation (NAO) has been hypothesized to drive interannual variability in Bermudan coral extension rates and reef-scale calcification through the provisioning of nutritional pulses associated with negative NAO winters. However, the direct influence of the NAO on Bermudan coral calcification rates remains to be determined and may vary between species and reef sites owing to implicit differences in coral life history strategies and environmental gradients across the Bermuda reef platform. In this study, we investigated the connection between negative NAO winters and Bermudan Diploria labyrinthiformis , Pseudodiploria strigosa , and Orbicella franksi coral calcification rates across rim reef, lagoon, and nearshore reef sites. Linear mixed effects modeling detected an inverse correlation between D . labyrinthiformis calcification rates and the winter NAO index, with higher rates associated with increasingly negative NAO winters. Conversely, there were no detectable correlations between P . strigosa or O . franksi calcification rates and the winter NAO index suggesting that coral calcification responses associated with negative NAO winters could be species-specific. The correlation between coral calcification rates and winter NAO index was significantly more negative at the outer rim of the reef (Hog Reef) compared to a nearshore reef site (Whalebone Bay), possibly indicating differential influence of the NAO as a function of the distance from the reef edge. Furthermore, a negative calcification anomaly was observed in 100% of D . labyrinthiformis cores in association with the 1988 coral bleaching event with a subsequent positive calcification anomaly in 1989 indicating a post-bleaching recovery in calcification rates. These results highlight the importance of assessing variable interannual coral calcification responses between species and across inshore-offshore gradients to interannual atmospheric modes such as the NAO, thermal stress events, and potential interactions between ocean warming and availability of coral nutrition to improve projections for future coral calcification rates under climate change. 
    more » « less
  4. Camp, Emma F. (Ed.)
    Marine ecosystems are structured by coexisting species occurring in adjacent or nested assemblages. Mangroves and corals are typically observed in adjacent assemblages (i.e., mangrove forests and coral reefs) but are increasingly reported in nested mangrove-coral assemblages with corals living within mangrove habitats. Here we define these nested assemblages as “coexisting mangrove-coral” (CMC) habitats and review the scientific literature to date to formalize a baseline understanding of these ecosystems and create a foundation for future studies. We identify 130 species of corals living within mangrove habitats across 12 locations spanning the Caribbean Sea, Red Sea, Indian Ocean, and South Pacific. We then provide the first description, to our knowledge, of a canopy CMC habitat type located in Bocas del Toro, Panama. This canopy CMC habitat is one of the most coral rich CMC habitats reported in the world, with 34 species of corals growing on and/or among submerged red mangrove aerial roots. Based on our literature review and field data, we identify biotic and abiotic characteristics common to CMC systems to create a classification framework of CMC habitat categories: (1) Lagoon, (2) Inlet, (3) Edge, and (4) Canopy. We then use the compiled data to create a GIS model to suggest where additional CMC habitats may occur globally. In a time where many ecosystems are at risk of disappearing, discovery and description of alternative habitats for species of critical concern are of utmost importance for their conservation and management. 
    more » « less