skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geometric Method for Estimating Coral Surface Area Using Image Analysis
This protocol outlines a non-destructive geometric method for estimating the surface area of Scleractinian coral samples with relatively simple morphologies (e.g., not densely branching). The geometric method was one of the earliest used for estimating the surface area of marine organisms (Odum et al. 1958). The basic principle of this method involves selecting geometric shapes or forms which closely resemble the morphology of a coral fragment (e.g., cylinders, cones, pyramids, hemispheres etc.), measuring the dimensional parameters of the coral, and applying the area equation for a given geometric shape to obtain the surface area estimate for the coral. This method has been commonly used in coral research previously (Szmant-Froelich 1985; Roberts and Ormond 1987; Babcock 1991; Bak and Meesters 1998; Naumann et al. 2009). URL: dx.doi.org/10.17504/protocols.io.bpxcmpiw  more » « less
Award ID(s):
1838667
PAR ID:
10214885
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Protocolsio
ISSN:
2473-1838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This protocol outlines a method of quantitatively measuring the degree of bleaching of a coral colony nondestructively in the field using image analysis. Previous studies have shown that mean intensity grey (MIG), also known as percent whiteness, is highly correlated with chlorophyll a and Symbiodiniaceae density (Chow et al. 2016, Amid et al. 2018), and therefore can be used to quantify the bleaching intensity of a coral colony. Color analysis can be done using digital photographs of live coral colonies either in situ (e.g., Maguire et al. 2003) or exsitu in the lab (Amid et al. 2018; this protocol). Photographs must be taken prior to any preservation or processing of tissue, such as freezing, use of preservatives or fixatives, airbrushing etc., to ensure no alteration of the original coral color occurs. In this protocol, corals are photographed in front of a white reference standard and the resulting color images are subsequently converted to 8-bit greyscale and analyzed. There are two steps to this protocol: 1) Photographing live coral fragments 2) Image analysis of mean grey value 
    more » « less
  2. null (Ed.)
    This method for separating coral tissues from algal endosymbiont (Symbiodiniaceae) for stable isotope analysis is modified from previously published methods (Hughes et al. 2010). There are three parts to preparing coral samples for stable carbon and nitrogen isotope analysis: 1) airbrush to remove coral tissue and algal cells from skeleton and store at -80 °C until ready to separate, 2) separate the coral tissue from the algal cells through centrifugation and filtering, and 3) dry and pack separated tissues into tin capsules for analysis in a stable isotope ratio mass spectrometer. This method was modified from Hughes et al. (2010) by James Price with the assistance of Alex Smith and Kerri Dobson and with the guidance of Andréa Grottoli at The Ohio State University. dx.doi.org/10.17504/protocols.io.bgi7juhn 
    more » « less
  3. Abstract from the article associated with the dataset: George, Mullinix, et al PeerJ 2021. Reef-building corals are ecosystem engineers that compete with other benthic or- ganisms for space and resources. Corals harvest energy through their surface by photosynthesis and heterotrophic feeding, and they divert part of this energy to defend their outer colony perimeter against competitors. Here, we hypothesized that corals with a larger space-filling surface and smaller perimeters increase energy gain while reducing the exposure to competitors. This predicted an association between these two geometric properties of corals and the competitive outcome against other benthic organisms. To test the prediction, fifty coral colonies from the Caribbean island of Curac ̧ao were rendered using digital 3D and 2D reconstructions. The surface areas, perimeters, box-counting dimensions (as a proxy of space-filling property), and other geometric properties were extracted and analyzed with respect to the percentage of the perimeter losing or winning against competitors based on the coral tissue apparent growth or damage. The increase in surface space-filling dimension was the only significant single indicator of coral winning outcomes, but the combination of surface space-filling dimension with perimeter length increased the statistical prediction of coral competition outcomes. Corals with larger surface space-filling dimensions (Ds > 2) and smaller perimeters displayed more winning outcomes, confirming the initial hypothesis. We propose that the space-filling property of coral surfaces complemented with other proxies of coral competitiveness, such as life history traits, will provide a more accurate quantitative characterization of coral competition outcomes on coral reefs. This framework also applies to other organisms or ecological systems that rely on complex surfaces to obtain energy for competition. For the compressed files: - Reconstruction of the split file can be accomplished by issuing the command cat *.tar.bz2*part-a* > 3D_model_stl_data.tar.bz2 - Unzipping the compressed files can be accomplished by issuing the command tar -jxvf *.tar.bz2 
    more » « less
  4. Coral morphology is influenced by genetics, the environment, or the interaction of both, and thus is highly variable. This protocol outlines a non-destructive and relatively simple method for measuring Scleractinian coral subcorallite skeletal structures (such as the septa length, theca thickness, and corallite diameter, etc.) using digital images produced as a result of digital microscopy or from scanning electron microscopy. This method uses X and Y coordinates of points placed onto photomicrographs to automatically calculate the length and/or diameter of a variety of sub-corallite skeletal structures in the Scleractinian coral Porites lobata. However, this protocol can be easily adapted for other coral species - the only difference may be the specific skeletal structures that are measured (for example, not all coral species have a pronounced columella or pali, or even circular corallites). This protocol is adapted from the methods described in Forsman et al. (2015) & Tisthammer et al. (2018). There are 4 steps to this protocol: 1) Removal of Organic Tissue from Coral Skeletons 2) Imaging of Coral Skeletons 3) Photomicrograph Image Analysis 4) Calculation of Corallite Microstructure Size dx.doi.org/10.17504/protocols.io.bx5bpq2n 
    more » « less
  5. null (Ed.)
    This protocol outlines a method for quantifying the total biomass of Scleractinian coral samples which have been ground into a homogenous paste consisting of aragonite skeleton, coral host tissue, and endosymbiotic Symbiodiniaceae cells. There are four parts to quantifying total biomass: 1) grind coral fragments into a homogenous paste, 2) partition the biomass subsample, 3) quantify the ash-free dry weight [AFDW], and 4) standardize AFDW to the colony surface area. This method has been reported in several publications by Grottoli's team (e.g., Rodrigues & Grottoli 2007). This protocol was written by Rowan McLachlan (03-19-20) and was reviewed by all co-authors. dx.doi.org/10.17504/protocols.io.bdyai7se 
    more » « less