Horstein, Burnashev, Shayevitz and Feder, Naghshvar et al . and others have studied sequential transmission of a k-bit message over the binary symmetric channel (BSC) with full, noiseless feedback using posterior matching. Yang et al . provide an improved lower bound on the achievable rate using martingale analysis that relies on the small-enough difference (SED) partitioning introduced by Naghshvar et al . SED requires a relatively complex encoder and decoder. To reduce complexity, this paper replaces SED with relaxed constraints that admit the small enough absolute difference (SEAD) partitioning rule. The main analytical results show that achievable-rate bounds higher than those found by Yang et al . [2] are possible even under the new constraints, which are less restrictive than SED. The new analysis does not use martingale theory for the confirmation phase and applies a surrogate channel technique to tighten the results. An initial systematic transmission further increases the achievable rate bound. The simplified encoder associated with SEAD has a complexity below order O ( K 2 ) and allows simulations for message sizes of at least 1000 bits. For example, simulations achieve 99% of of the channel’s 0.50-bit capacity with an average block size of 200 bits for a target codeword error rate of 10 -3.
more »
« less
Low Complexity Algorithms for Transmission of Short Blocks over the BSC with Full Feedback
Building on the work of Horstein, Shayevitz and Feder, and Naghshvar et al., this paper presents algorithms for low-complexity sequential transmission of a k-bit message over the binary symmetric channel (BSC) with full, noiseless feedback. To lower complexity, this paper shows that the initial k binary transmissions can be sent before any feedback is required and groups messages with equal posteriors to reduce the number of posterior updates from exponential in k to linear in k. Simulation results demonstrate that achievable rates for this full, noiseless feedback system approach capacity rapidly as a function of average blocklength, faster than known finite-blocklength lower bounds on achievable rate with noiseless active feedback and significantly faster than finite-blocklength lower bounds for a stop feedback system.
more »
« less
- Award ID(s):
- 1955660
- PAR ID:
- 10214991
- Date Published:
- Journal Name:
- 2020 IEEE International Symposium on Information Theory (ISIT)
- Page Range / eLocation ID:
- 2173 to 2178
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this paper, we consider the problem of sequential transmission over the binary symmetric channel (BSC) with full, noiseless feedback. Naghshvar et al. proposed a one-phase encoding scheme, for which we refer to as the small-enough difference (SED) encoder, which can achieve capacity and Burnashev's optimal error exponent for symmetric binary-input channels. They also provided a non-asymptotic upper bound on the average blocklength, which implies an achievability bound on rates. However, their achievability bound is loose compared to the simulated performance of SED encoder, and even lies beneath Polyanskiy's achievability bound of a system limited to stop feedback. This paper significantly tightens the achievability bound by using a Markovian analysis that leverages both the submartingale and Markov properties of the transmitted message. Our new non-asymptotic lower bound on achievable rate lies above Polyanskiy's bound and is close to the actual performance of the SED encoder over the BSC.more » « less
-
This paper presents new achievability bounds on the maximal achievable rate of variable-length stop-feedback (VLSF) codes operating over a binary erasure channel (BEC) at a fixed message size M=2^k . We provide bounds for two cases: The first case considers VLSF codes with possibly infinite decoding times and zero error probability. The second case limits the maximum (finite) number of decoding times and specifies a maximum tolerable probability of error. Both new achievability bounds are proved by constructing a new VLSF code that employs systematic transmission of the first k message bits followed by random linear fountain parity bits decoded with a rank decoder. For VLSF codes with infinite decoding times, our new bound outperforms the state-of-the-art result for BEC by Devassy et al. in 2016. We show that the backoff from capacity reduces to zero as the erasure probability decreases, thus giving a negative answer to the open question Devassy et al. posed on whether the 23.4% backoff to capacity at k=3 is fundamental to all BECs. For VLSF codes with finite decoding times, numerical evaluations show that the systematic transmission followed by random linear fountain coding performs better than random linear coding in terms of achievable rates.more » « less
-
In this paper, we consider the equivocation of finite blocklength coset codes when used over binary erasure wiretap channels. We make use of the equivocation matrix in comparing codes that are suitable for scenarios with noisy channels for both the intended receiver and an eavesdropper. Equivocation matrices have been studied in the past only for the binary erasure wiretap channel model with a noiseless channel for the intended recipient. In that case, an exact relationship between the elements of equivocation matrices for a code and its dual code was identified. The majority of work on coset codes for wiretap channels only addresses the noise-free main channel case, and extensions to noisy main channels require multi-edge type codes. In this paper, we supply a more insightful proof for the noiseless main channel case, and identify a new dual relationship that applies when two-edge type coset codes are used for the noisy main channel case. The end result is that the elements of the equivocation matrix for a dual code are known precisely from the equivocation matrix of the original code according to fixed reordering patterns. Such relationships allow one to study the equivocation of codes and their duals in tandem, which simplifies the search for best and/or good finite blocklength codes. This paper is the first work that succinctly links the equivocation/error correction capabilities of dual codes for two-edge type coset coding over erasure-prone main channels.more » « less
-
This paper presents a method for computing a finite-blocklength converse for the rate of fixed-length codes with feedback used on discrete memoryless channels (DMCs). The new converse is expressed in terms of a stochastic control problem whose solution can be efficiently computed using dynamic programming and Fourier methods. For channels such as the binary symmetric channel (BSC) and binary erasure channel (BEC), the accuracy of the proposed converse is similar to that of existing special-purpose converse bounds, but the new converse technique can be applied to arbitrary DMCs. We provide example applications of the new converse technique to the binary asymmetric channel (BAC) and the quantized amplitude-constrained AWGN channel.more » « less
An official website of the United States government

