Poly(lactic acid) (PLA) and its copolymer, poly(lactic‐
- Award ID(s):
- 1726525
- PAR ID:
- 10215011
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 10
- Issue:
- 14
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 8548 to 8557
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract co ‐glycolic acid) (PLGA), based aliphatic polyesters have been extensively used for biomedical applications, such as drug delivery system and tissue engineering, thanks to their biodegradability, benign toxicity, renewability, and adjustable mechanical properties. A rapidly growing field of cancer research, the development of therapeutic cancer vaccines or treatment modalities is aimed to deliver immunomodulatory signals that control the quality of immune responses against tumors. Herein, the progress and applications of PLA and PLGA are reviewed in delivering immunotherapeutics to treat cancers. -
Innovation in biomedical science is always a field of interest for researchers. Drug delivery, being one of the key areas of biomedical science, has gained considerable significance. The utilization of simple yet effective techniques such as electrospinning has undergone significant development in the field of drug delivery. Various polymers such as PEG (polyethylene glycol), PLGA (Poly(lactic-co-glycolic acid)), PLA(Polylactic acid), and PCA (poly(methacrylate citric acid)) have been utilized to prepare electrospinning-based drug delivery systems (DDSs). Polyvinyl alcohol (PVA) has recently gained attention because of its biocompatibility, biodegradability, non-toxicity, and ideal mechanical properties as these are the key factors in developing DDSs. Moreover, it has shown promising results in developing DDSs individually and when combined with natural and synthetic polymers such as chitosan and polycaprolactone (PCL). Considering the outstanding properties of PVA, the aim of this review paper was therefore to summarize these recent advances by highlighting the potential of electrospun PVA for drug delivery systems.
-
Abstract Graphene oxide and functionalized graphenic materials (FGMs) have promise as platforms for imparting programmable bioactivity to poly(methyl methacrylate) (PMMA)‐based bone cement. To date, however, graphenic fillers have only been feasible in PMMA cements at extremely low loadings, limiting the bioactive effects. At higher loadings, graphenic fillers decrease cement strength by aggregating and interfering with curing process. Here, these challenges are addressed by combining bioactive FGM fillers with a custom cement formulation. These cements contain an order of magnitude more graphenic filler than previous reports. Even at 1 wt% FGM, these cements have compressive strengths of 78– 88 MPa, flexural strengths of 74–81 MPa, and flexural stiffnesses of 1.8–1.9 GPa, surpassing the ASTM requirements for bone cement and competing with traditional PMMA cement. Further, by utilizing designer FGMs with programmed bioactivity, these cements demonstrate controlled release of osteogenic calcium ions (releasing a total of 5 ± 2 µmol of Ca2+ per gram of cement over 28 d) and stimulate a 290% increase in expression of alkaline phosphatase in human mesenchymal stem cells in vitro. Also, design criteria are described to guide creation of future generations of bone cements that utilize FGMs as platforms to achieve dynamic biological activity.
-
Abstract Cell‐seeded scaffolds play critical roles in the production of tissue engineered intestine (TEI), a potential strategy for the treatment of short bowel syndrome. The current study compares polyglycolic acid (PGA), polycaprolactone (PCL), and collagen as scaffolds for TEI production. Tubular PGA scaffolds were prepared from nonwoven BIOFELT®. Tubular PCL scaffolds were fabricated by electrospinning. Tubular collagen scaffolds were prepared using CollaTape, a wound dressing material. Both PGA and collagen were coated with poly‐
l ‐lactic acid (PLLA) to improve scaffold mechanical properties. Pore size, porosity, microstructure, mechanical properties (suture retention strength and ultimate compressive force) were determined. The scaffolds were first seeded with crypt stem cells isolated from 1 to 3 day old rat pups and then implanted into the peritoneal cavity of nude rats. After 4 weeks ofin vivo incubation, these cell‐seeded scaffolds were harvested for assessment of the TEI produced. Of the three materials compared, PLLA coated tubular PGA scaffolds had the appropriate pore size, mechanical properties and degradation rate leading to the production of TEI with an architecture similar to that of native rat intestine. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 750–760, 2019. -
Electrospun fibrous scaffolds made from polymers such as polycaprolactone (PCL) have been used in drug delivery and tissue engineering for their viscoelasticity, biocompatibility, biodegradability, and tunability. Hydrophobicity and the prolonged degradation of PCL causes inhibition of the natural tissue-remodeling processes. Poliglecaprone (PGC), which consists of PCL and Poly (glycolic acid) (PGA), has better mechanical properties and a shorter degradation time compared to PCL. A blend between PCL and PGC called PPG can give enhanced shared properties for biomedical applications. In this study, we fabricated a blend of PCL and PGC nanofibrous scaffold (PPG) at different ratios of PGC utilizing electrospinning. We studied the physicochemical and biological properties, such as morphology, crystallinity, surface wettability, degradation, surface functionalization, and cellular compatibility. All PPG scaffolds exhibited good uniformity in fiber morphology and improved mechanical properties. The surface wettability and degradation studies confirmed that increasing PGC in the PPG composites increased hydrophilicity and scaffold degradation respectively. Cell viability and cytotoxicity results showed that the scaffold with PGC was more viable and less toxic than the PCL-only scaffolds. PPG fibers were successfully coated with polydopamine (PDA) and collagen to improve degradation, biocompatibility, and bioactivity. The nanofibrous scaffolds synthesized in this study can be utilized for tissue engineering applications such as for regeneration of human articular cartilage regeneration and soft bones.