skip to main content

Title: A generalized wave-vortex decomposition for rotating Boussinesq flows with arbitrary stratification
The energetically independent linear wave and geostrophic (vortex) solutions are shown to be a complete basis for velocity and density variables $(u,v,w,\rho )$ in a rotating non-hydrostatic Boussinesq fluid with arbitrary stratification and non-periodic vertical boundaries. This work extends the familiar wave-vortex decomposition for triply periodic domains with constant stratification. As a consequence of the decomposition, the fluid can be unambiguously separated into decoupled linear wave and geostrophic components at each instant in time, without the need for temporal filtering. The fluid can then be diagnosed for temporal changes in wave and geostrophic coefficients at each unique wavenumber and mode, including those that inevitably occur due to nonlinear interactions. We demonstrate that this methodology can be used to determine which physical interactions cause the transfer of energy between modes by projecting the nonlinear equations of motion onto the wave-vortex basis. In the particular example given, we show that an eddy in geostrophic balance superimposed with inertial oscillations at the surface transfers energy from the inertial oscillations to internal gravity wave modes. This approach can be applied more generally to determine which mechanisms are involved in energy transfers between wave and vortices, including their respective scales. Finally, we show that the more » nonlinear equations of motion expressed in a wave-vortex basis are computationally efficient for certain problems. In cases where stratification profiles vary strongly with depth, this approach may be an attractive alternative to traditional spectral models for rotating Boussinesq flow. « less
Authors:
; ;
Award ID(s):
1658564
Publication Date:
NSF-PAR ID:
10215027
Journal Name:
Journal of Fluid Mechanics
Volume:
912
ISSN:
0022-1120
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Anticyclonic vortices focus and trap near-inertial waves so that near-inertial energy levels are elevated within the vortex core. Some aspects of this process, including the nonlinear modification of the vortex by the wave, are explained by the existence of trapped near-inertial eigenmodes. These vortex eigenmodes are easily excited by an initialwave with horizontal scale much larger than that of the vortex radius. We study this process using a wave-averaged model of near-inertial dynamics and compare its theoretical predictions with numerical solutions of the three-dimensional Boussinesq equations. In the linear approximation, the model predicts the eigenmode frequencies and spatial structures, and a near-inertial wave energy signature that is characterized by an approximately time-periodic, azimuthally invariant pattern. The wave-averaged model represents the nonlinear feedback of the waves on the vortex via a wave-induced contribution to the potential vorticity that is proportional to the Laplacian of the kinetic energy density of the waves. When this is taken into account, the modal frequency is predicted to increase linearly with the energy of the initial excitation. Both linear and nonlinear predictions agree convincingly with the Boussinesq results.
  2. The YBJ equation (Young & Ben Jelloul, J. Marine Res. , vol. 55, 1997, pp. 735–766) provides a phase-averaged description of the propagation of near-inertial waves (NIWs) through a geostrophic flow. YBJ is obtained via an asymptotic expansion based on the limit $\mathit{Bu}\rightarrow 0$ , where $\mathit{Bu}$ is the Burger number of the NIWs. Here we develop an improved version, the YBJ + equation. In common with an earlier improvement proposed by Thomas, Smith & Bühler ( J. Fluid Mech. , vol. 817, 2017, pp. 406–438), YBJ + has a dispersion relation that is second-order accurate in $\mathit{Bu}$ . (YBJ is first-order accurate.) Thus both improvements have the same formal justification. But the dispersion relation of YBJ + is a Padé approximant to the exact dispersion relation and with $\mathit{Bu}$ of order unity this is significantly more accurate than the power-series approximation of Thomas et al. (2017). Moreover, in the limit of high horizontal wavenumber $k\rightarrow \infty$ , the wave frequency of YBJ + asymptotes to twice the inertial frequency $2f$ . This enables solution of YBJ + with explicit time-stepping schemes using a time step determined by stable integration of oscillations with frequency $2f$ . Other phase-averaged equations have dispersion relations with frequency increasing as $k^{2}$more »(YBJ) or $k^{4}$ (Thomas et al. 2017): in these cases stable integration with an explicit scheme becomes impractical with increasing horizontal resolution. The YBJ + equation is tested by comparing its numerical solutions with those of the Boussinesq and YBJ equations. In virtually all cases, YBJ + is more accurate than YBJ. The error, however, does not go rapidly to zero as the Burger number characterizing the initial condition is reduced: advection and refraction by geostrophic eddies reduces in the initial length scale of NIWs so that $\mathit{Bu}$ increases with time. This increase, if unchecked, would destroy the approximation. We show, however, that dispersion limits the damage by confining most of the wave energy to low  $\mathit{Bu}$ . In other words, advection and refraction by geostrophic flows does not result in a strong transfer of initially near-inertial energy out of the near-inertial frequency band.« less
  3. In the presence of inertia-gravity waves, the geostrophic and hydrostatic balance that characterises the slow dynamics of rapidly rotating, strongly stratified flows holds in a time-averaged sense and applies to the Lagrangian-mean velocity and buoyancy. We give an elementary derivation of this wave-averaged balance and illustrate its accuracy in numerical solutions of the three-dimensional Boussinesq equations, using a simple configuration in which vertically planar near-inertial waves interact with a barotropic anticylonic vortex. We further use the conservation of the wave-averaged potential vorticity to predict the change in the barotropic vortex induced by the waves.
  4. Abstract

    We formulate the two-dimensional gravity-capillary water wave equations in a spatially quasi-periodic setting and present a numerical study of solutions of the initial value problem. We propose a Fourier pseudo-spectral discretization of the equations of motion in which one-dimensional quasi-periodic functions are represented by two-dimensional periodic functions on a torus. We adopt a conformal mapping formulation and employ a quasi-periodic version of the Hilbert transform to determine the normal velocity of the free surface. Two methods of time-stepping the initial value problem are proposed, an explicit Runge–Kutta (ERK) method and an exponential time-differencing (ETD) scheme. The ETD approach makes use of the small-scale decomposition to eliminate stiffness due to surface tension. We perform a convergence study to compare the accuracy and efficiency of the methods on a traveling wave test problem. We also present an example of a periodic wave profile containing vertical tangent lines that is set in motion with a quasi-periodic velocity potential. As time evolves, each wave peak evolves differently, and only some of them overturn. Beyond water waves, we argue that spatial quasi-periodicity is a natural setting to study the dynamics of linear and nonlinear waves, offering a third option to the usual modeling assumptionmore »that solutions either evolve on a periodic domain or decay at infinity.

    « less
  5. Stationary longitudinal vortical rolls emerge in katabatic and anabatic Prandtl slope flows at shallow slopes as a result of an instability when the imposed surface buoyancy flux relative to the background stratification is sufficiently large. Here, we identify the self-pairing of these longitudinal rolls as a unique flow structure. The topology of the counter-rotating vortex pair bears a striking resemblance to speaker-wires and their interaction with each other is a precursor to further destabilization and breakdown of the flow field into smaller structures. On its own, a speaker-wire vortex retains its unique topology without any vortex reconnection or breakup. For a fixed slope angle $\alpha =3^{\circ }$ and at a constant Prandtl number, we analyse the saturated state of speaker-wire vortices and perform a bi-global linear stability analysis based on their stationary state. We establish the existence of both fundamental and subharmonic secondary instabilities depending on the circulation and transverse wavelength of the base state of speaker-wire vortices. The dominance of subharmonic modes relative to the fundamental mode helps to explain the relative stability of a single vortex pair compared to the vortex dynamics in the presence of two or an even number of pairs. These instability modes are essentialmore »for the bending and merging of multiple speaker-wire vortices, which break up and lead to more dynamically unstable states, eventually paving the way for transition towards turbulence. This process is demonstrated via three-dimensional flow simulations with which we are able to track the nonlinear temporal evolution of these instabilities.« less