- Award ID(s):
- 1808371
- PAR ID:
- 10215112
- Date Published:
- Journal Name:
- European Journal of Inorganic Chemistry
- Volume:
- 2019
- Issue:
- 42
- ISSN:
- 1434-1948
- Page Range / eLocation ID:
- 4538 to 4545
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)We report the hydrothermal syntheses and crystal structures of aquabis(2,2′-bipyridine-κ 2 N , N ′)copper(II) hexafluoridosilicate tetrahydrate, [Cu(bpy) 2 (H 2 O)][SiF 6 ]·4H 2 O (bpy is 2,2′-bipyridine, C 10 H 8 N 2 ), (I), bis(2,2′-bipyridine-3κ 2 N , N ′)-di-μ-fluorido-1:3κ 2 F : F ;2:3κ 2 F : F -decafluorido-1κ 5 F ,2κ 5 F -ditantalum(V)copper(II), [Cu(bpy) 2 (TaF 6 ) 2 ], (II), tris(2,2′-bipyridine-κ 2 N , N ′)copper(II) bis[hexafluoridotantalate(V)], [Cu(bpy) 3 ][TaF 6 ] 2 , (III), and catena -poly[[diaqua(2,2′-bipyridine-κ 2 N , N ′)copper(II)]-μ-fluorido-tetrafluoridotin-μ-fluorido], [Cu(bpy)(H 2 O) 2 SnF 6 ] n , (IV). Compounds (I), (II) and (III) contain locally chiral copper coordination complexes with C 2 , D 2 , and D 3 symmetry, respectively. The extended structures of (I) and (IV) are consolidated by O—H...F and O—H...O hydrogen bonds. The structure of (III) was found to be a merohedral (racemic) twin.more » « less
-
Abstract Rechargeable aqueous batteries with Zn2+as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g−1at 0.1 A g−1, and the capacity retention rate is 94% after 2000 cycles at 2 A g−1and 83% after 10 000 cycles at 5 A g−1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8layered structure in NaCaVO is energetically favorable for Zn2+diffusion and the structural water situated between V3O8layers promotes a fast charge‐transfer and bulk migration of Zn2+by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+and Ca2+alternately suited in V3O8layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability.