Abstract Understanding and attributing changes to water quality is essential to the study and management of coastal ecosystems and the ecological functions they sustain (e.g., primary productivity, predation, and submerged aquatic vegetation growth). However, describing patterns of water clarity—a key aspect of water quality—over meaningful scales in space and time is challenged by high spatial and temporal variability due to natural and anthropogenic processes. Regionally tuned satellite algorithms can provide a more complete understanding of coastal water clarity changes and drivers. In this study, we used open‐access satellite data and low‐cost in situ methods to improve estimates of water clarity in an optically complex coastal water body. Specifically, we created a remote sensing water clarity product by compiling Landsat‐8 and Sentinel‐2 reflectance data with long‐term Secchi depth measurements at 12 sites over 8 years in a shallow turbid coastal lagoon system in Virginia, USA. Our satellite‐based model explained ∼33% of the variation in in situ water clarity. Our approach increases the spatiotemporal coverage of in situ water clarity data and improves estimates from bio‐optical algorithms that overpredicted water clarity. This could lead to a better understanding of water clarity changes and drivers to better predict how water quality will change in the future.
more »
« less
Crystal Structure and Preferential Site Occupancy in Cs6Mn(H2O)2(VO3)8 and Cs5KMn(H2O)2(VO3)8
- Award ID(s):
- 1808371
- PAR ID:
- 10215114
- Date Published:
- Journal Name:
- Journal of Chemical Crystallography
- Volume:
- 49
- Issue:
- 3
- ISSN:
- 1074-1542
- Page Range / eLocation ID:
- 186 to 192
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report rf-penetration depth measurements of the quasi-2D organic superconductor β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6, which has the largest separation between consecutive conduction layers of any 2D organic metal with a single packing motif. Using a contactless tunnel diode oscillator measurement technique, we show the zero-field cooling dependence and field sweeps up to 28 T oriented at various angles with respect to the crystal conduction planes. When oriented parallel to the layers, the upper critical field, Hc2=7.6 T, which is the calculated paramagnetic limit for this material. No signs of inhomogeneous superconductivity are seen, despite previous predictions. When oriented perpendicular to the layers, Shubnikov–de Haas oscillations are seen as low as 6 T, and from these we calculate Fermi surface parameters such as the superconducting coherence length and Dingle temperature. One remarkable result from our data is the high anisotropy of Hc2 in the parallel and perpendicular directions, due to an abnormally low Hc2⊥=0.4 T. Such high anisotropy is rare in other organics and the origin of the smaller Hc2⊥ may be a consequence of a lower effective mass.more » « less
An official website of the United States government

