Two-dimensional electron gas or hole gas (2DEG or 2DHG) and their functionalities at artificial heterostructure interfaces have attracted extensive attention in recent years. Many theoretical calculations and recent experimental studies have shown the formation of alternating 2DEG and 2DHG at ferroelectric/insulator interfaces, such as BiFeO3/TbScO3, depending on the different polarization states. However, a direct observation based on the local charge distribution at the BiFeO3/TbScO3interface has yet to be explored. Herein we demonstrate the direct observation of 2DHG and 2DEG at BiFeO3/TbScO3interface using four-dimensional scanning transmission electron microscopy and Bader charge analysis. The results show that the measured charge state of each Fe/O columns at the interface undergoes a significant increase/reduction for the polarization state pointing away/toward the interface, indicating the existence of 2DHG/2DEG. This method opens up a path of directly observing charge at atomic scale and provides new insights into the design of future electronic nanodevices.
The atomic structure at the interface between two-dimensional (2D) and three-dimensional (3D) materials influences properties such as contact resistance, photo-response, and high-frequency electrical performance. Moiré engineering is yet to be utilized for tailoring this 2D/3D interface, despite its success in enabling correlated physics at 2D/2D interfaces. Using epitaxially aligned MoS2/Au{111} as a model system, we demonstrate the use of advanced scanning transmission electron microscopy (STEM) combined with a geometric convolution technique in imaging the crystallographic 32 Å moiré pattern at the 2D/3D interface. This moiré period is often hidden in conventional electron microscopy, where the Au structure is seen in projection. We show, via ab initio electronic structure calculations, that charge density is modulated according to the moiré period, illustrating the potential for (opto-)electronic moiré engineering at the 2D/3D interface. Our work presents a general pathway to directly image periodic modulation at interfaces using this combination of emerging microscopy techniques.
more » « less- PAR ID:
- 10215323
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Moiré patterns at van der Waals interfaces between twisted 2D crystals give rise to distinct optoelectronic excitations, as well as, narrowly dispersive bands responsible for correlated electron phenomena. Contrasting with the conventional, mechanically stacked planar twist moirés, recent work shows twisted van der Waals interfaces spontaneously formed in nanowires of layered crystals, where Eshelby twist due to axial screw dislocations stabilizes a chiral structure with small interlayer rotation. Here, the realization of tunable twist in germanium(II) sulfide (GeS) van der Waals nanowires is reported. Tapered nanowires host continuously variable interlayer twist. Homojunctions between dislocated (chiral) and defect‐free (achiral) segments are obtained by triggering the emission of axial dislocations during growth. Measurements across such junctions, implemented here using local absorption and luminescence spectroscopy, provide a convenient tool for detecting twist effects. The results identify a versatile system for 3D twistronics, probing moiré physics, and for realizing moiré architectures without equivalent in planar systems.
-
Abstract Transition metal trichalcogenides (TMTs) are two-dimensional (2D) systems with quasi-one-dimensional (quasi-1D) chains. These 2D materials are less susceptible to undesirable edge defects, which enhances their promise for low-dimensional optical and electronic device applications. However, so far, the performance of 2D devices based on TMTs has been hampered by contact-related issues. Therefore, in this review, a diligent effort has been made to both elucidate and summarize the interfacial interactions between gold and various TMTs, namely, In4Se3, TiS3, ZrS3, HfS3, and HfSe3. X-ray photoemission spectroscopy data, supported by the results of electrical transport measurements, provide insights into the nature of interactions at the Au/In4Se3, Au/TiS3, Au/ZrS3, Au/HfS3, and Au/HfSe3interfaces. This may help identify and pave a path toward resolving the contemporary contact-related problems that have plagued the performance of TMT-based nanodevices.
Graphical abstract I –V characteristics of (a) TiS3, (b) ZrS3, and (c) HfS3 -
Abstract Two key interfaces in flexible perovskite solar cells (f‐PSCs) are mechanically reinforced simultaneously: one between the electron‐transport layer (ETL) and the 3D metal‐halide perovskite (MHP) thin film using self‐assembled monolayer (SAM), and the other between the 3D‐MHP thin film and the hole‐transport layer (HTL) using an in situ grown low‐dimensional (LD) MHP capping layer. The interfacial mechanical properties are measured and modeled. This rational interface engineering results in the enhancement of not only the mechanical properties of both interfaces but also their optoelectronic properties holistically. As a result, the new class of dual‐interface‐reinforced f‐PSCs has an unprecedented combination of the following three important performance parameters: high power‐conversion efficiency (PCE) of 21.03% (with reduced hysteresis), improved operational stability of 1000 h
T 90(duration at 90% initial PCE retained), and enhanced mechanical reliability of 10 000 cyclesn 88(number of bending cycles at 88% initial PCE retained). The scientific underpinnings of these synergistic enhancements are elucidated. -
Abstract Surface acoustic waves (SAWs) propagate along solid-air, solid-liquid, and solid-solid interfaces. Their characteristics depend on the elastic properties of the solid. Combining transmission electron microscopy (TEM) experiments with molecular dynamics (MD) simulations, we probe atomic environments around intrinsic defects that generate SAWs in vertically stacked two-dimensional (2D) bilayers of MoS2. Our joint experimental-simulation study provides insights into SAW-induced structural and dynamical changes and thermomechanical responses of MoS2bilayers. Using MD simulations, we compute mechanical properties from the SAW velocity and thermal conductivity from thermal diffusion of SAWs. The results for Young’s modulus and thermal conductivity of an MoS2monolayer are in good agreement with experiments. The presence of defects, such as nanopores which generate SAWs, reduces the thermal conductivity of 2D-MoS2by an order of magnitude. We also observe dramatic changes in moiré patterns, phonon focusing, and cuspidal structures on 2D-MoS2layers.