skip to main content


Title: Weakening of the Extratropical Storm Tracks in Solar Geoengineering Scenarios
Abstract

Solar geoengineering that aims to offset global warming could nonetheless alter atmospheric temperature gradients and humidity and thus affect the extratropical storm tracks. Here, we first analyze climate model simulations from experiment G1 of the Geoengineering Model Intercomparison Project, in which a reduction in incoming solar radiation balances a quadrupling of CO2. The Northern Hemisphere extratropical storm track weakens by a comparable amount in G1 as it does for increased CO2only. The Southern Hemisphere storm track also weakens in G1, in contrast to a strengthening and poleward shift for increased CO2. Using mean available potential energy, we show that the changes in zonal‐mean temperature and humidity are sufficient to explain the different responses of storm‐track intensity. We also demonstrate similar weakening in a more complex geoengineering scenario. Our results offer insight into how geoengineering affects storm tracks, highlighting the potential for geoengineering to induce novel climate changes.

 
more » « less
Award ID(s):
1749986 1931641
NSF-PAR ID:
10455331
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change has been projected to increase the intensity and magnitude of extreme temperature in Indonesia. Solar radiation management (SRM) has been proposed as a strategy to temporarily combat global warming, buying time for negative emissions. Although the global impacts of SRM have been extensively studied in recent years, regional impacts, especially in the tropics, have received much less attention. This article investigates the potential stratospheric sulphate aerosol injection (SAI) to modify mean and extreme temperature, as well as the relative humidity and wet bulb temperature (WBT) change over Indonesian Maritime Continent (IMC) based on simulations from three different earth system models. We applied a simple downscaling method and corrected the bias of model output to reproduce historical temperatures and relative humidity over IMC. We evaluated changes in geoengineering model intercomparison project (GeoMIP) experiment G4, an SAI experiment in 5 Tg of SO2into the equatorial lower stratosphere between 2020 and 2069, concurrent with the RCP4.5 emissions scenario. G4 is able to significantly reduce the temperature means and extremes, and although differences in magnitude of response and spatial pattern occur, there is a generally consistent response. The spatial response of changes forced by RCP4.5 scenario and G4 are notably heterogeneous in the archipelago, highlighting uncertainties that would be critical in assessing socio‐economic consequences of both doing, and not doing G4. In general, SAI has bigger impacts in reducing temperatures over land than oceans, and the southern monsoon region shows more variability. G4 is also effective at reducing the likelihood of WBT > 27°C events compared with RCP4.5 after some years of SAI deployment as well as during the post‐termination period of SAI. Regional downscaling may be an effective tool in obtaining policy‐relevant information about local effects of different future scenarios involving SAI.

     
    more » « less
  2. Abstract

    The effects of volcanic eruptions on hurricane statistics are examined using two long simulations from the Community Earth System Model (CESM) Last Millennium Ensemble (LME). The first is an unforced control simulation, wherein all boundary conditions were held constant at their 850 CE values (LMEcontrol). The second is a “fully forced” simulation with time evolving radiative changes from volcanic, solar, and land use changes from 850 CE through present (LMEforced). Large tropical volcanic eruptions produce the greatest change in radiative forcing during this time period, which comprise the focus of this study. The Weather Research and Forecasting (WRF) model is used to dynamically downscale 150 control years of LMEcontroland an additional 84 years of LMEforcedfor all mid-latitude volcanic eruptions between 1100 and 1850 CE. This time period was selected based on computational considerations. For each eruption, 2 years are dynamically downscaled. 23 of these volcanic eruptions are in the Northern Hemisphere and 19 are in the Southern Hemisphere. The effectiveness of the downscaling methodology is examined by applying the same downscaling approach to historical ERA-I reanalysis data and comparing the downscaled storm tracks and intensities to the International Best Track Archive for Climate Stewardship (IBTrACS) database. Hurricane statistics are then computed from both the downscaled control and downscaled forced LME simulations. Results suggest moderate effects on hurricanes from the average of all northern hemisphere eruptions, with the largest effects being from the volcanoes with the most aerosol forcing. More specifically, reductions in hurricane frequency, intensity, and lifetime following northern hemisphere eruptions are apparent. Strong evidence is also shown for correlation between eruption strength and changes in these diagnostics. The aggregate effect from both northern and southern hemisphere eruptions is minor. While reductions in frequency, intensity, and lifetime from northern hemisphere eruptions occur, the opposite effect is observed from southern hemisphere eruptions.

     
    more » « less
  3. null (Ed.)
    Abstract. The realization of the difficulty of limiting global-meantemperatures to within 1.5 or 2.0 ∘C abovepre-industrial levels stipulated by the 21st Conference of Parties inParis has led to increased interest in solar radiation management (SRM)techniques. Proposed SRM schemes aim to increase planetary albedo to reflectmore sunlight back to space and induce a cooling that acts to partiallyoffset global warming. Under the auspices of the Geoengineering ModelIntercomparison Project, we have performed model experiments whereby globaltemperature under the high-forcing SSP5-8.5 scenario is reduced to followthat of the medium-forcing SSP2-4.5 scenario. Two different mechanisms toachieve this are employed: the first via a reduction in the solar constant(experiment G6solar) and the second via modelling injections of sulfurdioxide (experiment G6sulfur) which forms sulfate aerosol in thestratosphere. Results from two state-of-the-art coupled Earth system models(UKESM1 and CESM2-WACCM6) both show an impact on the North AtlanticOscillation (NAO) in G6sulfur but not in G6solar. Both models show apersistent positive anomaly in the NAO during the Northern Hemisphere winterseason in G6sulfur, suggesting an increase in zonal flow and an increase inNorth Atlantic storm track activity impacting the Eurasian continent and leadingto high-latitude warming over Europe and Asia. These results are broadlyconsistent with previous findings which show similar impacts fromstratospheric volcanic aerosol on the NAO and emphasize that detailedmodelling of geoengineering processes is required if accurate impacts of SRMeffects are to be simulated. Differences remain between the two models inpredicting regional changes over the continental USA and Africa, suggestingthat more models need to perform such simulations before attempting to drawany conclusions regarding potential continental-scale climate change underSRM. 
    more » « less
  4. Abstract

    Slab-ocean aquaplanet simulations with thermodynamic sea ice are used to study the zonally symmetric mechanisms whereby polar sea ice loss impacts the midlatitude atmosphere. Imposed sea ice loss (difference without and with sea ice with historical CO2concentration) leads to global warming, polar amplified warming, and a weakening of poleward atmospheric energy transport and the midlatitude storm-track intensity. The simulations confirm an energetic mechanism that predicts a weakening of storm-track intensity in response to sea ice loss, given the change of surface albedo and assuming a passive ocean. Namely, sea ice loss increases the absorption of shortwave radiation by the surface (following the decrease of surface albedo), which increases surface turbulent fluxes into the atmosphere thereby weakening poleward atmospheric energy transport. The storm-track intensity weakens because it dominates poleward energy transport. The quantitative prediction underlying the mechanism captures the weakening but underestimates its amplitude. The weakening is also consistent with weaker mean available potential energy (polar amplified warming) and scales with sea ice extent, which is controlled by the slab-ocean depth. The energetic mechanism also operates in response to sea ice loss due to melting (difference of the response to quadrupled CO2with and without sea ice). Finally, the midlatitude response to sea ice loss in the aquaplanet agrees qualitatively with the response in more complex climate models. Namely, the storm-track intensity weakens and the energetic mechanism operates, but the method used to impose sea ice loss in coupled models impacts the surface response.

     
    more » « less
  5. Abstract Under increasing greenhouse gases, the Arctic warms about twice as fast as elsewhere, known as Arctic amplification (AA). AA weakens meridional temperature gradients and is hypothesized to weaken zonal wind and cause wavier circulation with stronger meridional wind ( υ ) over northern mid-to-high latitudes. Here model simulations are analyzed to examine the υ response to increased CO 2 and AA alone. Total υ changes are found to be dominated by the effect of increased CO 2 without AA, with a zonal wavenumber-4 (wavenumber-3) change pattern over the northern (southern) extratropics that generally enhances current υ and results partly from changes in zonal temperature gradients. The extratropical υ change patterns are quasi-barotropic and are more pronounced during boreal winter. The CO 2 forcing also causes baroclinic υ changes over the tropics tied to convection changes. The impact of AA on υ is mainly over the northern extratropics and is opposite to the effect of increased CO 2 but with smaller magnitude. An eastward shift (∼5° longitude) and an amplitude increase (∼1 m s −1 ) in the climatology of the northerlies over Europe caused mainly by CO 2 forcing contribute to the drying in southern Europe, while both AA and CO 2 forcing enhance the climatology of the northerlies over East Asia. Over the northern mid-to-high latitudes, Arctic sea ice loss and AA enhance the land–ocean thermal contrast in winter, while increased CO 2 alone weakens it, resulting in opposite changes in zonal temperature gradients and thus υ . Different warming rates over land and ocean also contribute to the intermodel spread in υ response patterns among climate models. Significance Statement Meridional wind ( υ ) greatly contributes to thermal and moisture advection due to large meridional gradients in these fields. It is hypothesized that the enhanced Arctic warming under anthropogenic global warming could weaken meridional temperature gradients, decelerate westerly jets, and cause wavier circulation with stronger υ over northern extratropics. Using novel climate model simulations, we found that the effect of increased CO 2 without AA determines the total υ changes. AA generally weakens the climatological υ , contrary to the direct effect of increased CO 2 . The υ changes are small relative to its climatology but may have large impacts on regional climate over central Europe, East Asia, and interior North America. More research is needed to examine the mechanisms causing regional υ changes. 
    more » « less