- Award ID(s):
- 1936624
- Publication Date:
- NSF-PAR ID:
- 10215501
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Sponsoring Org:
- National Science Foundation
More Like this
-
The ability to steer the state of a dynamical network towards a desired state within a time horizon is intrinsically dependent on the number of driven nodes considered, as well as the network’s topology. The trade-off between time-to-control and the minimum number of driven nodes is captured by the notion of the actuation spectrum (AS). We study the actuation spectra of a variety of artificial and real-world networked systems, modeled by fractional-order dynamics that are capable of capturing non-Markovian time properties with power-law dependencies. We find evidence that, in both types of networks, the actuation spectra are similar when the time-to-control is less or equal to about 1/5 of the size of the network. Nonetheless, for a time-to-control larger than the network size, the minimum number of driven nodes required to attain controllability in networks with fractional-order dynamics may still decrease in comparison with other networks with Markovian properties. These differences suggest that the minimum number of driven nodes can be used to determine the true dynamical nature of the network. Furthermore, such differences also suggest that new generative models are required to reproduce the actuation spectra of real fractional-order dynamical networks.
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »
-
The brain processes memories as we sleep, generating rhythms of electrical activity called ‘sleep spindles’. Sleep spindles were long thought to be a state where the entire brain was fully synchronized by this rhythm. This was based on EEG recordings, short for electroencephalogram, a technique that uses electrodes on the scalp to measure electrical activity in the outermost layer of the brain, the cortex. But more recent intracranial recordings of people undergoing brain surgery have challenged this idea and suggested that sleep spindles may not be a state of global brain synchronization, but rather localised to specific areas. Mofrad et al. sought to clarify the extent to which spindles co-occur at multiple sites in the brain, which could shed light on how networks of neurons coordinate memory storage during sleep. To analyse highly variable brain wave recordings, Mofrad et al. adapted deep learning algorithms initially developed for detecting earthquakes and gravitational waves. The resulting algorithm, designed to more sensitively detect spindles amongst other brain activity, was then applied to a range of sleep recordings from humans and macaque monkeys. The analyses revealed that widespread and complex patterns of spindle rhythms, spanning multiple areas in the cortex of the brain, actuallymore »
-
Multilayer networks continue to gain significant attention in many areas of study, particularly due to their high utility in modeling interdependent systems such as critical infrastructures, human brain connectome, and socioenvironmental ecosystems. However, clustering of multilayer networks, especially using the information on higher-order interactions of the system entities, still remains in its infancy. In turn, higher-order connectivity is often the key in such multilayer network applications as developing optimal partitioning of critical infrastructures in order to isolate unhealthy system components under cyber-physical threats and simultaneous identification of multiple brain regions affected by trauma or mental illness. In this paper, we introduce the concepts of topological data analysis to studies of complex multilayer networks and propose a topological approach for network clustering. The key rationale is to group nodes based not on pairwise connectivity patterns or relationships between observations recorded at two individual nodes but based on how similar in shape their local neighborhoods are at various resolution scales. Since shapes of local node neighborhoods are quantified using a topological summary in terms of persistence diagrams, we refer to the approach as clustering using persistence diagrams (CPD). CPD systematically accounts for the important heterogeneous higher-order properties of node interactions within andmore »
-
In network control theory, driving all the nodes in the Feedback Vertex Set (FVS) by node-state override forces the network into one of its attractors (long-term dynamic behaviors). The FVS is often composed of more nodes than can be realistically manipulated in a system; for example, only up to three nodes can be controlled in intracellular networks, while their FVS may contain more than 10 nodes. Thus, we developed an approach to rank subsets of the FVS on Boolean models of intracellular networks using topological, dynamics-independent measures. We investigated the use of seven topological prediction measures sorted into three categories—centrality measures, propagation measures, and cycle-based measures. Using each measure, every subset was ranked and then evaluated against two dynamics-based metrics that measure the ability of interventions to drive the system toward or away from its attractors: To Control and Away Control. After examining an array of biological networks, we found that the FVS subsets that ranked in the top according to the propagation metrics can most effectively control the network. This result was independently corroborated on a second array of different Boolean models of biological networks. Consequently, overriding the entire FVS is not required to drive a biological network tomore »