skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling and Analysis of Terahertz Graphene Switches for On-Wafer Coplanar Transmission Lines
We present an analysis of graphene-loaded transmission line switches for sub-millimeter wave and terahertz applications. As such, we propose equivalent circuit models for graphene-loaded coplanar waveguides and striplines and examine the switching performance under certain parameters. Specifically, we identify the optimum design of graphene switches based on transmission line characteristic impedance, scaling factor, graphene shape, and topology (series or shunt). These parameters are varied to obtain the insertion loss and ON/OFF ratio of each switch configuration. The extracted results act as the design roadmap toward an optimum switch topology and emphasize the limitations with respect to fabrication challenges, parasitic effects, and radiation losses that are especially pronounced in the millimeter wave/terahertz bands. This is the first time that such an in-depth analysis is carried out on graphene-loaded transmission line switches, enabling the development of efficient millimeter wave/terahertz tunable topologies in terms of insertion loss and ON/OFF ratio. Specifically, the optimized switches can be integrated with antennas or employed for the development of tunable phase shifters, leading to the implementation of efficient reconfigurable reflective surfaces (e.g., reflectarrays) or coded phased arrays either for imaging or wireless communication applications. In our models, we use measured graphene values (sheet impedance) instead of theoretical equations, to obtain the actual switching performance. Moreover, the proposed study can be easily expanded to other thin film materials that can be characterized by a sheet impedance including vanadium dioxide and molybdenum disulfide. Finally, the proposed equivalent models are crucial for this in-depth study; since we simulated more than 2,000,000 configurations, a computationally challenging task with the use of full-wave solvers.  more » « less
Award ID(s):
1847138
PAR ID:
10215761
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of infrared millimeter and terahertz waves
Volume:
41
ISSN:
1866-6892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a theoretical study on the performance of graphene-loaded coplanar waveguide switches for 5G and beyond applications. Therefore, we exploit the tunable properties of graphene to device cost-effective, large-scale, broadband sub- millimeter-wave switches. Given the sheet impedance of biased and unbiased graphene monolayers, the model provides the optimum switching ratio with respect to insertion loss, characteristic impedance of transmission line, and graphene geometry. Using measured graphene sheet resistance, we compute the optimum switching performance for series and shunt single- pole-single-though sub-millimeter-wave (220-330 GHz) switches. 
    more » « less
  2. Abstract Devices designed to dynamically control the transmission, reflection, and absorption of terahertz (THz) radiation are essential for the development of a broad range of THz technologies. A viable approach utilizes materials which undergo an insulator‐to‐metal transition (IMT), switching from transmissive to reflective upon becoming metallic. However, for many applications, it is undesirable to have spurious reflections that can scatter incident light and induce noise to the system. We present an electrically actuated, broadband THz switch which transitions from a transparent state with low reflectivity, to an absorptive state for which both the reflectivity and transmission are strongly suppressed. Our device consists of a patterned high‐resistivity silicon metamaterial layer that provides broadband reflection suppression by matching the impedance of free space. This is integrated with a VO2ground plane, which undergoes an IMT by means of a DC bias applied to an interdigitated electrode. THz time domain spectroscopy measurements reveal an active bandwidth of 700 GHz with suppressed reflection and more than 90% transmission amplitude modulation with a low insertion loss. We utilize finite‐difference time domain (FDTD) simulations in order to examine the loss mechanisms of the device, as well as the sensitivity to polarization and incident angle. This device validates a general approach toward suppressing unwanted reflections in THz modulators and switches which can be easily adapted to a broad array of applications through straightforward modifications of the structural parameters. 
    more » « less
  3. We present a modular quasi-optical pulse slicer designed for use at terahertz (THz) frequencies. Given a quasi-cw input, the two outputs of a module are (1) a pulse with programmable duration and (2) its complement. The quasi-optical design incorporates a laser-driven silicon switch at Brewster's angle to the incoming THz beam, which limits undesired reflections before the switch is activated such that THz power is only transmitted when the switch is “on.” An “off” switch ensures that no power is leaked after the pulse and that the switching profile is sharp. The slicer's small footprint (0.048×0.072×0.162 m3) and small insertion loss (1.2 dB at 320 GHz) as well as high switching efficiency (∼70%) allows modules to be stacked to create multiple pulses. The output channel that is not used for experiments can be used for concurrent analysis of beam parameters. Stacking modular assemblies will enable more complex sequences of kW-level pulses than are currently achievable for applications including free-electron-laser or gyrotron-powered pulsed electron spin resonance at high magnetic fields. 
    more » « less
  4. Non-volatile radio-frequency (RF) switches based on hexagonal boron nitride (hBN) are realized for the first time with low insertion loss (≤ 0.2 dB) and high isolation (≥ 15 dB) up to 110 GHz. Crystalline hBN enables the thinnest RF switch device with a single monolayer (~0.33 nm) as the memory layer owing to its robust layered structure. It affords ~20 dBm power handling, 10 dB higher compared to MoS 2 switches due to its wider bandgap (~6 eV). Importantly, operating frequencies cover the RF, 5G, and mm-wave bands, making this a promising low-power switch for diverse communication and connectivity front-end systems. Compared to other switch technologies based on MEMS, memristor, and phase-change memory (PCM), hBN switches offer a promising combination of non-volatility, nanosecond switching, power handling, high figure-of-merit cutoff frequency (43 THz), and heater-less ambient integration. Our pioneering work suggests that atomically-thin nanomaterials can be good device candidates for 5G and beyond. 
    more » « less
  5. Manipulating airflow is important for controlling pneumatically actuated soft robots, however, current switching techniques suffer from leakage under high pressure (>200 kPa) or require a complex fabrication process. We propose a new method for reliably and repeatably cutting off airflow by harnessing pre-loaded torsional forces applied to our tubing. The switching distance and hysteresis of our pre-twisted tubing are programmable by varying the tube length and the twisting angle. Our experiments demonstrate the use of pretwisted tubing to implement CMOS equivalent fluidic switches configured as NOT-, AND-, and OR-gates, and a distance sensor for feedback control for the oscillation of a PneuNet. Our approach of pre-loading tubes with a torsional force allows for simplicity, integrated functionality, and the capability of manipulating high-pressure, fluidic signals mainly at the cost of tubing. 
    more » « less