skip to main content


Title: Modeling and Analysis of Terahertz Graphene Switches for On-Wafer Coplanar Transmission Lines
We present an analysis of graphene-loaded transmission line switches for sub-millimeter wave and terahertz applications. As such, we propose equivalent circuit models for graphene-loaded coplanar waveguides and striplines and examine the switching performance under certain parameters. Specifically, we identify the optimum design of graphene switches based on transmission line characteristic impedance, scaling factor, graphene shape, and topology (series or shunt). These parameters are varied to obtain the insertion loss and ON/OFF ratio of each switch configuration. The extracted results act as the design roadmap toward an optimum switch topology and emphasize the limitations with respect to fabrication challenges, parasitic effects, and radiation losses that are especially pronounced in the millimeter wave/terahertz bands. This is the first time that such an in-depth analysis is carried out on graphene-loaded transmission line switches, enabling the development of efficient millimeter wave/terahertz tunable topologies in terms of insertion loss and ON/OFF ratio. Specifically, the optimized switches can be integrated with antennas or employed for the development of tunable phase shifters, leading to the implementation of efficient reconfigurable reflective surfaces (e.g., reflectarrays) or coded phased arrays either for imaging or wireless communication applications. In our models, we use measured graphene values (sheet impedance) instead of theoretical equations, to obtain the actual switching performance. Moreover, the proposed study can be easily expanded to other thin film materials that can be characterized by a sheet impedance including vanadium dioxide and molybdenum disulfide. Finally, the proposed equivalent models are crucial for this in-depth study; since we simulated more than 2,000,000 configurations, a computationally challenging task with the use of full-wave solvers.  more » « less
Award ID(s):
1847138
NSF-PAR ID:
10215761
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of infrared millimeter and terahertz waves
Volume:
41
ISSN:
1866-6892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a theoretical study on the performance of graphene-loaded coplanar waveguide switches for 5G and beyond applications. Therefore, we exploit the tunable properties of graphene to device cost-effective, large-scale, broadband sub- millimeter-wave switches. Given the sheet impedance of biased and unbiased graphene monolayers, the model provides the optimum switching ratio with respect to insertion loss, characteristic impedance of transmission line, and graphene geometry. Using measured graphene sheet resistance, we compute the optimum switching performance for series and shunt single- pole-single-though sub-millimeter-wave (220-330 GHz) switches. 
    more » « less
  2. Abstract

    Semiconductor photoconductive switches are useful and versatile emitters of terahertz (THz) radiation with a broad range of applications in THz imaging and time-domain spectroscopy. One fundamental challenge for achieving efficient ultrafast switching, however, is the relatively long carrier lifetime in most common semiconductors. To obtain picosecond ultrafast pulses, especially when coupled with waveguides/transmission lines, semiconductors are typically engineered with high defect density to reduce the carrier lifetimes, which in turn lowers the overall power output of the photoconductive switches. To overcome this fundamental trade-off, here we present a new hybrid photoconductive switch design by engineering a hot-carrier fast lane using graphene on silicon. While photoexcited carriers are generated in the silicon layer, similar to a conventional switch, the hot carriers are transferred to the graphene layer for efficient collection at the contacts. As a result, the graphene-silicon hybrid photoconductive switch emits THz fields with up to 80 times amplitude enhancement compared to its graphene-free counterpart. These results both further the understanding of ultrafast hot carrier transport in such hybrid systems and lay the groundwork toward intrinsically more powerful THz devices based on 2D-3D hybrid heterostructures.

     
    more » « less
  3. Shape memory alloy foils that are appropriately patterned are cycled between two different metal foil geometries resulting in two different terahertz (THz) plasmonic responses. This is accomplished by using patterned foils of a nickel–titanium alloy (Nitinol) that switches between the martensite phase below 31 °C, yielding one physical geometry, and the austenite phase, when the foil is heated above 51 °C, yielding a second physical geometry. In order to enable this reproducible switching, the sample is initially put through a two‐way training procedure, through which the two different desired physical geometries are imprinted. Specifically, the metal foils are trained to switch between a sinusoidal corrugation, either 1D or 2D, at close to room temperature and a flat metal sheet above the austenite phase transition temperature. The foils are found to switch reproducibly between geometries over at least 100 thermal cycles. Using THz time‐domain spectroscopy, the transmission properties of the foils are measured as a function of incident polarization and foil geometry. The changes in spectrum are explained qualitatively and through numerical simulation.

     
    more » « less
  4. Abstract

    Devices designed to dynamically control the transmission, reflection, and absorption of terahertz (THz) radiation are essential for the development of a broad range of THz technologies. A viable approach utilizes materials which undergo an insulator‐to‐metal transition (IMT), switching from transmissive to reflective upon becoming metallic. However, for many applications, it is undesirable to have spurious reflections that can scatter incident light and induce noise to the system. We present an electrically actuated, broadband THz switch which transitions from a transparent state with low reflectivity, to an absorptive state for which both the reflectivity and transmission are strongly suppressed. Our device consists of a patterned high‐resistivity silicon metamaterial layer that provides broadband reflection suppression by matching the impedance of free space. This is integrated with a VO2ground plane, which undergoes an IMT by means of a DC bias applied to an interdigitated electrode. THz time domain spectroscopy measurements reveal an active bandwidth of 700 GHz with suppressed reflection and more than 90% transmission amplitude modulation with a low insertion loss. We utilize finite‐difference time domain (FDTD) simulations in order to examine the loss mechanisms of the device, as well as the sensitivity to polarization and incident angle. This device validates a general approach toward suppressing unwanted reflections in THz modulators and switches which can be easily adapted to a broad array of applications through straightforward modifications of the structural parameters.

     
    more » « less
  5. Non-volatile radio-frequency (RF) switches based on hexagonal boron nitride (hBN) are realized for the first time with low insertion loss (≤ 0.2 dB) and high isolation (≥ 15 dB) up to 110 GHz. Crystalline hBN enables the thinnest RF switch device with a single monolayer (~0.33 nm) as the memory layer owing to its robust layered structure. It affords ~20 dBm power handling, 10 dB higher compared to MoS 2 switches due to its wider bandgap (~6 eV). Importantly, operating frequencies cover the RF, 5G, and mm-wave bands, making this a promising low-power switch for diverse communication and connectivity front-end systems. Compared to other switch technologies based on MEMS, memristor, and phase-change memory (PCM), hBN switches offer a promising combination of non-volatility, nanosecond switching, power handling, high figure-of-merit cutoff frequency (43 THz), and heater-less ambient integration. Our pioneering work suggests that atomically-thin nanomaterials can be good device candidates for 5G and beyond. 
    more » « less