skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Network Schema Preserving Heterogeneous Information Network Embedding

As heterogeneous networks have become increasingly ubiquitous, Heterogeneous Information Network (HIN) embedding, aiming to project nodes into a low-dimensional space while preserving the heterogeneous structure, has drawn increasing attention in recent years. Many of the existing HIN embedding methods adopt meta-path guided random walk to retain both the semantics and structural correlations between different types of nodes. However, the selection of meta-paths is still an open problem, which either depends on domain knowledge or is learned from label information. As a uniform blueprint of HIN, the network schema comprehensively embraces the high-order structure and contains rich semantics. In this paper, we make the first attempt to study network schema preserving HIN embedding, and propose a novel model named NSHE. In NSHE, a network schema sampling method is first proposed to generate sub-graphs (i.e., schema instances), and then multi-task learning task is built to preserve the heterogeneous structure of each schema instance. Besides preserving pairwise structure information, NSHE is able to retain high-order structure (i.e., network schema). Extensive experiments on three real-world datasets demonstrate that our proposed model NSHE significantly outperforms the state-of-the-art methods.

 
more » « less
Award ID(s):
1940859 2027127 2040144 2034470
NSF-PAR ID:
10215834
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Joint Conference on Artificial Intelligence (IJCAI)
Page Range / eLocation ID:
1366 to 1372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2011, we proposed PathSim to systematically define and compute similarity between nodes in a heterogeneous information network (HIN), where nodes and links are from different types. In the PathSim paper, we for the first time introduced HIN with general network schema and proposed the concept of meta-paths to systematically define new relation types between nodes. In this paper, we summarize the impact of PathSim paper in both academia and industry. We start from the algorithms that are based on meta-path-based feature engineering, then move on to the recent development in heterogeneous network representation learning, including both shallow network embedding and heterogeneous graph neural networks. In the end, we make the connection between knowledge graphs and HINs and discuss the implication of meta-paths in the symbolic reasoning scenario. Finally, we point out several future directions. 
    more » « less
  2. Many real-world tasks solved by heterogeneous network embedding methods can be cast as modeling the likelihood of a pairwise relationship between two nodes. For example, the goal of author identification task is to model the likelihood of a paper being written by an author (paper–author pairwise relationship). Existing taskguided embedding methods are node-centric in that they simply measure the similarity between the node embeddings to compute the likelihood of a pairwise relationship between two nodes. However, we claim that for task-guided embeddings, it is crucial to focus on directly modeling the pairwise relationship. In this paper, we propose a novel task-guided pair embedding framework in heterogeneous network, called TaPEm, that directly models the relationship between a pair of nodes that are related to a specific task (e.g., paper-author relationship in author identification). To this end, we 1) propose to learn a pair embedding under the guidance of its associated context path, i.e., a sequence of nodes between the pair, and 2) devise the pair validity classifier to distinguish whether the pair is valid with respect to the specific task at hand. By introducing pair embeddings that capture the semantics behind the pairwise relationships, we are able to learn the fine-grained pairwise relationship between two nodes, which is paramount for task-guided embedding methods. Extensive experiments on author identification task demonstrate that TaPEm outperforms the state-of-the-art methods, especially for authors with few publication records. 
    more » « less
  3. Systematic reviews (SRs) are a crucial component of evidence-based clinical practice. Unfortunately, SRs are labor-intensive and unscalable with the exponential growth in literature. Automating evidence synthesis using machine learning models has been proposed but solely focuses on the text and ignores additional features like citation information. Recent work demonstrated that citation embeddings can outperform the text itself, suggesting that better network representation may expedite SRs. Yet, how to utilize the rich information in heterogeneous information networks (HIN) for network embeddings is understudied. Existing HIN models fail to produce a high-quality embedding compared to simply running state-of-the-art homogeneous network models. To address existing HIN model limitations, we propose SR-CoMbEr, a community-based multi-view graph convolutional network for learning better embeddings for evidence synthesis. Our model automatically discovers article communities to learn robust embeddings that simultaneously encapsulate the rich semantics in HINs. We demonstrate the effectiveness of our model to automate 15 SRs. 
    more » « less
  4. Heterogeneous Information Network (HIN), where nodes and their attributes denote real-world entities and links encode relationships between entities, are ubiquitous in many applications. The presence of multiple types of nodes and links pose significant challenges to the state-of-the-art methods for learning node embeddings from heterogeneous graphs. To address these challenges, we consider three variants of graph variational autoencoder models for heterogeneous networks that avoid the computationally expensive sampling of meta-paths. The proposed methods also maintain uncertainty estimates of node embeddings that help improve generalization performance. We report the results of experiments on link prediction using three different real-world heterogeneous network benchmark data sets that show that the proposed methods significantly outperform state-of-the-art baselines. 
    more » « less
  5. Heterogeneous information networks (HINs) are ubiquitous in real-world applications. In the meantime, network embedding has emerged as a convenient tool to mine and learn from networked data. As a result, it is of interest to develop HIN embedding methods. However, the heterogeneity in HINs introduces not only rich information but also potentially incompatible semantics, which poses special challenges to embedding learning in HINs. With the intention to preserve the rich yet potentially incompatible information in HIN embedding, we propose to study the problem of comprehensive transcription of heterogeneous information networks. The comprehensive transcription of HINs also provides an easy-to-use approach to unleash the power of HINs, since it requires no additional supervision, expertise, or feature engineering. To cope with the challenges in the comprehensive transcription of HINs, we propose the HEER algorithm, which embeds HINs via edge representations that are further coupled with properly-learned heterogeneous metrics. To corroborate the efficacy of HEER, we conducted experiments on two large-scale real-words datasets with an edge reconstruction task and multiple case studies. Experiment results demonstrate the effectiveness of the proposed HEER model and the utility of edge representations and heterogeneous metrics. The code and data are available at https://github.com/GentleZhu/HEER. 
    more » « less