Differential privacy has seen remarkable success as a rigorous and practical formalization of data privacy in the past decade. This privacy definition and its divergence based relaxations, however, have several acknowledged weaknesses, either in handling composition of private algorithms or in analyzing important primitives like privacy amplification by subsampling. Inspired by the hypothesis testing formulation of privacy, this paper proposes a new relaxation, which we term `f-differential privacy' (f-DP). This notion of privacy has a number of appealing properties and, in particular, avoids difficulties associated with divergence based relaxations. First, f-DP preserves the hypothesis testing interpretation. In addition, f-DP allows for lossless reasoning about composition in an algebraic fashion. Moreover, we provide a powerful technique to import existing results proven for original DP to f-DP and, as an application, obtain a simple subsampling theorem for f-DP. In addition to the above findings, we introduce a canonical single-parameter family of privacy notions within the f-DP class that is referred to as `Gaussian differential privacy' (GDP), defined based on testing two shifted Gaussians. GDP is focal among the f-DP class because of a central limit theorem we prove. More precisely, the privacy guarantees of \emph{any} hypothesis testing based definition of privacy (including original DP) converges to GDP in the limit under composition. The CLT also yields a computationally inexpensive tool for analyzing the exact composition of private algorithms. Taken together, this collection of attractive properties render f-DP a mathematically coherent, analytically tractable, and versatile framework for private data analysis. Finally, we demonstrate the use of the tools we develop by giving an improved privacy analysis of noisy stochastic gradient descent.
more »
« less
Deep Learning with Gaussian Differential Privacy
Deep learning models are often trained on datasets that contain sensitive information such as individuals' shopping transactions, personal contacts, and medical records. An increasingly important line of work therefore has sought to train neural networks subject to privacy constraints that are specified by differential privacy or its divergence-based relaxations. These privacy definitions, however, have weaknesses in handling certain important primitives (composition and subsampling), thereby giving loose or complicated privacy analyses of training neural networks. In this paper, we consider a recently proposed privacy definition termed \textit{f-differential privacy} [18] for a refined privacy analysis of training neural networks. Leveraging the appealing properties of f-differential privacy in handling composition and subsampling, this paper derives analytically tractable expressions for the privacy guarantees of both stochastic gradient descent and Adam used in training deep neural networks, without the need of developing sophisticated techniques as [3] did. Our results demonstrate that the f-differential privacy framework allows for a new privacy analysis that improves on the prior analysis~[3], which in turn suggests tuning certain parameters of neural networks for a better prediction accuracy without violating the privacy budget. These theoretically derived improvements are confirmed by our experiments in a range of tasks in image classification, text classification, and recommender systems. Python code to calculate the privacy cost for these experiments is publicly available in the \texttt{TensorFlow Privacy} library.
more »
« less
- PAR ID:
- 10215877
- Date Published:
- Journal Name:
- Harvard data science review
- ISSN:
- 2644-2353
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In the past decade, differential privacy has seen remarkable success as a rigorous and practical formalization of data privacy. This privacy definition and its divergence based relaxations, however, have several acknowledged weaknesses, either in handling composition of private algorithms or in analysing important primitives like privacy amplification by subsampling. Inspired by the hypothesis testing formulation of privacy, this paper proposes a new relaxation of differential privacy, which we term ‘f-differential privacy’ (f-DP). This notion of privacy has a number of appealing properties and, in particular, avoids difficulties associated with divergence based relaxations. First, f-DP faithfully preserves the hypothesis testing interpretation of differential privacy, thereby making the privacy guarantees easily interpretable. In addition, f-DP allows for lossless reasoning about composition in an algebraic fashion. Moreover, we provide a powerful technique to import existing results proven for the original differential privacy definition to f-DP and, as an application of this technique, obtain a simple and easy-to-interpret theorem of privacy amplification by subsampling for f-DP. In addition to the above findings, we introduce a canonical single-parameter family of privacy notions within the f-DP class that is referred to as ‘Gaussian differential privacy’ (GDP), defined based on hypothesis testing of two shifted Gaussian distributions. GDP is the focal privacy definition among the family of f-DP guarantees due to a central limit theorem for differential privacy that we prove. More precisely, the privacy guarantees of any hypothesis testing based definition of privacy (including the original differential privacy definition) converges to GDP in the limit under composition. We also prove a Berry–Esseen style version of the central limit theorem, which gives a computationally inexpensive tool for tractably analysing the exact composition of private algorithms. Taken together, this collection of attractive properties render f-DP a mathematically coherent, analytically tractable and versatile framework for private data analysis. Finally, we demonstrate the use of the tools we develop by giving an improved analysis of the privacy guarantees of noisy stochastic gradient descent.more » « less
-
Datasets containing sensitive information are often sequentially analyzed by many algorithms. This raises a fundamental question in differential privacy regarding how the overall privacy bound degrades under composition. To address this question, we introduce a family of analytical and sharp privacy bounds under composition using the Edgeworth expansion in the framework of the recently proposed f-differential privacy. In contrast to the existing composition theorems using the central limit theorem, our new privacy bounds under composition gain improved tightness by leveraging the refined approximation accuracy of the Edgeworth expansion. Our approach is easy to implement and computationally efficient for any number of compositions. The superiority of these new bounds is confirmed by an asymptotic error analysis and an application to quantifying the overall privacy guarantees of noisy stochastic gradient descent used in training private deep neural networks.more » « less
-
The central question studied in this paper is Rényi Differential Privacy (RDP) guarantees for general discrete local randomizers in the shuffle privacy model. In the shuffle model, each of the 𝑛 clients randomizes its response using a local differentially private (LDP) mechanism and the untrusted server only receives a random permutation (shuffle) of the client responses without association to each client. The principal result in this paper is the first direct RDP bounds for general discrete local randomization in the shuffle pri- vacy model, and we develop new analysis techniques for deriving our results which could be of independent interest. In applications, such an RDP guarantee is most useful when we use it for composing several private interactions. We numerically demonstrate that, for important regimes, with composition our bound yields an improve- ment in privacy guarantee by a factor of 8× over the state-of-the-art approximate Differential Privacy (DP) guarantee (with standard composition) for shuffle models. Moreover, combining with Pois- son subsampling, our result leads to at least 10× improvement over subsampled approximate DP with standard composition.more » « less
-
null (Ed.)Deep learning holds a great promise of revolutionizing healthcare and medicine. Unfortunately, various inference attack models demonstrated that deep learning puts sensitive patient information at risk. The high capacity of deep neural networks is the main reason behind the privacy loss. In particular, patient information in the training data can be unintentionally memorized by a deep network. Adversarial parties can extract that information given the ability to access or query the network. In this paper, we propose a novel privacy-preserving mechanism for training deep neural networks. Our approach adds decaying Gaussian noise to the gradients at every training iteration. This is in contrast to the mainstream approach adopted by Google's TensorFlow Privacy, which employs the same noise scale in each step of the whole training process. Compared to existing methods, our proposed approach provides an explicit closed-form mathematical expression to approximately estimate the privacy loss. It is easy to compute and can be useful when the users would like to decide proper training time, noise scale, and sampling ratio during the planning phase. We provide extensive experimental results using one real-world medical dataset (chest radiographs from the CheXpert dataset) to validate the effectiveness of the proposed approach. The proposed differential privacy based deep learning model achieves significantly higher classification accuracy over the existing methods with the same privacy budget.more » « less