skip to main content


Title: Degradable polyanhydride networks derived from itaconic acid
The development of tunable and degradable crosslinked-polyanhydride networks from renewably derived itaconic anhydrides and multifunctional thiols is presented. Itaconic acid was initially converted to ethyl itaconic anhydride and isoamyl itaconic anhydride via a two-step synthetic procedure on hundred-gram scale with minimal purification. Dinorbornene-functionalized derivatives were prepared via cycloaddition chemistry, and photoinitiated thiol–ene polymerization reactions were explored using commercially available tetra- and hexa-functional thiols, all using solvent-free syntheses. The thiol–ene reaction kinetics of different monomer compositions were characterized by real-time Fourier transform infrared (RT-FTIR) spectroscopy, with the norbornene functionalized derivatives exhibiting the highest reactivity towards thiol–ene photopolymerizations. The thermal and mechanical characteristics of the thermosets were analyzed and the viscoelastic behavior was investigated by dynamic mechanical analysis to understand the influence of the ester functionality and choice of crosslinker on the material properties. The anhydride backbone was found to be susceptible to controlled degradation under physiologically-(phosphate-buffered saline) and environmentally-relevant (artificial seawater) testing conditions over a period of 60 days at 50 °C. This work demonstrates that itaconic acid may be a useful feedstock in the generation of degradable polyanhydride networks via thiol–ene photopolymerization.  more » « less
Award ID(s):
1901635
NSF-PAR ID:
10215896
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
4
ISSN:
1759-9954
Page Range / eLocation ID:
608 to 617
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Post-polymerization modification (PPM) has been broadly employed to achieve functional polymer brush surfaces via immobilization of functional moieties on the brush using efficient organic tranformations. Here, we demonstrate the amine-anhydride reaction as a modular PPM route to functional brush surfaces using poly(styrene–maleic anhydride) (pSMA) copolymer brushes as a platform. The amine-anhydride reaction on pSMA surfaces proceeds to high conversions, with rapid kinetics, under ambient reaction conditions, and exploits a readily available library of functional amines. Using cystamine as a modifier, a convenient route to thiol-functionalized brushes was developed that enables sequential PPM modifications with a large library of alkenes using both base-catalyzed thiol-Michael and radical-mediated thiol–ene reactions. The high fidelity PPM reactions were demonstrated via the development of multifunctional, micropatterned brush surfaces. 
    more » « less
  2. null (Ed.)
    The acid-catalyzed thiol–ene reaction (ACT) is a unique thiol–X conjugation strategy that produces S,X-acetal conjugates. Unlike the well-known radical-mediated thiol–ene and anion-mediated thiol-Michael reactions that produce static thioether bonds, acetals provide unique function for various fields such as drug delivery and protecting group chemistries; however, this reaction is relatively underutilized for creating new and unique materials owing to the unexplored reactivity over a broad set of substrates and potential side reactions. Solution-phase studies using a range of thiol and alkene substrates were conducted to evaluate the ACT reaction as a conjugation strategy. Substrates that efficiently undergo cationic polymerizations, such as those containing vinyl functional groups, were found to be highly reactive to thiols in the presence of catalytic amounts of acid. Additionally, sequential initiation of three separate thiol–X reactions (thiol-Michael, ACT, and thiol–ene) was achieved in a one-pot scheme simply by the addition of the appropriate catalyst demonstrating substrate selectivity. Furthermore, photoinitiation of the ACT reaction was achieved for the first time under 470 nm blue light using a novel photochromic photoacid. Finally, using multifunctional monomers, solid-state polymer networks were formed using the ACT reaction producing acetal crosslinks. The presence of S,X-acetal bonds results in an increased glass transition temperature of 20 °C as compared with the same polymeric film polymerized through the radical thiol–ene mechanism. This investigation demonstrates the broad impact of the ACT reaction and expands upon the diverse thiol–X library of conjugation strategies towards the development of novel materials systems. 
    more » « less
  3. Abstract

    Dynamic microcapsules are reported that exhibit shell membranes with fast and reversible changes in permeability in response to external stimuli. A hydrophobic anhydride monomer is employed in the thiol–ene polymerization as a disguised precursor for the acid‐containing shells; this enables the direct encapsulation of aqueous cargo in the liquid core using microfluidic fabrication of water‐in‐oil‐in‐water double emulsion drops. The poly(anhydride) shells hydrolyze in their aqueous environment without further chemical treatment, yielding cross‐linked poly(acid) microcapsules that exhibit trigger‐responsive and reversible property changes. The microcapsule shell can actively be switched numerous times between impermeable and permeable due to the exceptional mechanical properties of the thiol–ene network that prevent rupture or failure of the membrane, allowing it to withstand the mechanical stresses imposed on the capsule during the dynamic property changes. The permeability and molecular weight cutoff of the microcapsules can dynamically be controlled with triggers such as pH and ionic environment. The reversibly triggered changes in permeability of the shell exhibit a response time of seconds, enabling actively adjustable release profiles, as well as on‐demand capture, trapping, and release of cargo molecules with molecular selectivity and fast on‐off rates.

     
    more » « less
  4. The advancement of triplet–triplet annihilation based upconversion (TTA-UC) in emerging technologies necessitates the development of solid-state systems that are readily accessible and broadly applicable. Here, we demonstrate that thiol–ene click chemistry can be used as a facile cure-on-demand synthetic route to access elastomeric films capable of TTA-UC. Photopolymerization of multifunctional thiols in the presence of a thiol-functionalized 9,10-diphenylanthracene (DPA) emitter results in covalent DPA integration and homogenous crosslinked polymer networks. The palladium( ii ) octaethylporphyrin (PdOEP) sensitizer is subsequently introduced into the films through solution immersion. Upon excitation at 544 nm, green-to-blue upconversion is observed with compositional tuning resulting in an optimal upconverted emission intensity at 1.0 wt% DPA and 0.02 wt% PdOEP. The effectiveness of thiol–ene networks to function as robust host materials for solid-state TTA-UC is further demonstrated by improved photostability in air. 
    more » « less
  5. Levoglucosan is a renewable chemical obtained in high yields from pyrolysis of cellulosic biomass, which offers rich functionality for synthetic modification and crosslinking. Here, we report the facile and scalable synthesis of a family of biobased networks from triallyl levoglucosan and multifunctional thiols via UV-initiated thiol–ene click chemistry. The multifunctional thiols utilized in this study can also be sourced from renewable feedstocks, leading to overall high bio-based content of the synthesized levoglucosan networks. The thermomechanical and hydrolytic degradation properties of the resultant networks are tailored based on the type and stoichiometric ratio of thiol crosslinker employed. The Young's modulus and glass transition temperature of levoglucosan-based networks are tunable over the wide ranges of 3.3 MPa to 14.5 MPa and −19.4 °C to 6.9 °C, respectively. The levoglucosan-based thermosets exhibit excellent thermal stability with Td,10% > 305 °C for all networks. The suitability of these resin formulations for extrusion-based 3D printing was illustrated using a UV-assisted direct ink write (DIW) system creating 3D printed parts with excellent fidelity. Hydrolytic degradation of these 3D printed parts via ester hydrolysis demonstrated that levoglucosan-based resins are excellent candidates for sustainable rapid prototyping and mass production applications. Overall, this work displays the utility of levoglucosan as a renewable platform chemical that enables access to tailored thermosets important in applications ranging from 3D printing to biomaterials. 
    more » « less