Eukaryotes share a conserved messenger RNA (mRNA) decay pathway in which bulk mRNA is degraded by exoribonucleases. In addition, it has become clear that more specialized mRNA decay pathways are initiated by endonucleolytic cleavage at particular sites. The transfer RNA (tRNA) splicing endonuclease (TSEN) has been studied for its ability to remove introns from pre-tRNAs. More recently it has been shown that single amino acid mutations in TSEN cause pontocerebellar hypoplasia. Other recent studies indicate that TSEN has other functions, but the nature of these functions has remained obscure. Here we show that yeast TSEN cleaves a specific subset of mRNAs that encode mitochondrial proteins, and that the cleavage sites are in part determined by their sequence. This provides an explanation for the counterintuitive mitochondrial localization of yeast TSEN. To identify these mRNA target sites, we developed a “comPARE” (comparative parallel analysis of RNA ends) bioinformatic approach that should be easily implemented and widely applicable to the study of endoribonucleases. The similarity of tRNA endonuclease-initiated decay to regulated IRE1-dependent decay of mRNA suggests that mRNA specificity by colocalization may be an important determinant for the degradation of localized mRNAs in a variety of eukaryotic cells.
- Award ID(s):
- 1817764
- Publication Date:
- NSF-PAR ID:
- 10216006
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 10
- Page Range or eLocation-ID:
- Article No. e2020429118
- ISSN:
- 0027-8424
- Publisher:
- Proceedings of the National Academy of Sciences
- Sponsoring Org:
- National Science Foundation
More Like this
-
The relatively recent focus on the widespread occurrence and abundance of circular RNAs (circRNA) in the human cell nucleus has sparked an intensive interest in their existence and possible roles in cell gene expression and physiology. The presence of circRNAs in mammalian mitochondria, however, has been under-explored. Mitochondrial mRNAs differ from those produced from nuclear genes because they lack introns and are transcribed as poly-cistronic transcripts that are endonucleolytically cleaved, leaving transcripts with very small 5′ and 3′ UTRs. Circular RNAs have been identified in the semi-autonomous organelles of single-celled organisms and plants but their purpose has not been clearly demonstrated. The goal of our project was to test the hypothesis, processed mRNAs are circularized in vertebrate mitochondria as a necessary RNA processing step prior to translation. Mitochondrial mRNAs were isolated from the human cell line HEK293 and evidence of circularization sought by treating RNA with RNAse-R and then amplifying putative 3′-5′ junction sites. Sequence results demonstrated the occurrence of mRNA circularization within each coding region of the mitochondrial genome. However, in most cases the circRNAs carried coding regions that had been truncated, suggesting they were not translatable. Quantification of the circularized versions of the mRNAs revealed they comprise amore »
-
Gene expression is typically quantified as RNA abundance, which is influenced by both synthesis (transcription) and decay. Cytoplasmic decay typically initiates by deadenylation, after which decay can occur through any of three cytoplasmic decay pathways. Recent advances reveal several mechanisms by which RNA decay is regulated to control RNA abundance. mRNA can be post-transcriptionally modified, either indirectly through secondary structure or through direct modifications to the transcript itself, sometimes resulting in subsequent changes in mRNA decay rates. mRNA abundances can also be modified by tapping into pathways normally used for RNA quality control. Regulated mRNA decay can also come about through post-translational modification of decapping complex subunits. Likewise, mRNAs can undergo changes in subcellular localization (for example, the deposition of specific mRNAs into processing bodies, or P-bodies, where stabilization and destabilization occur in a transcript- and context-dependent manner). Additionally, specialized functions of mRNA decay pathways were implicated in a genome-wide mRNA decay analysis in Arabidopsis. Advances made using plants are emphasized in this review, but relevant studies from other model systems that highlight RNA decay mechanisms that may also be conserved in plants are discussed.
-
Mitochondria carry the remnant of an ancestral bacterial chromosome and express those genes with a system separate and distinct from the nucleus. Mitochondrial genes are transcribed as poly-cistronic primary transcripts which are post-transcriptionally processed to create individual translationally competent mRNAs. Algae post-transcriptional processing has only been explored in Chlamydomonas reinhardtii (Class: Chlorophyceae) and the mature mRNAs are different than higher plants, having no 5′ UnTranslated Regions (UTRs), much shorter and more variable 3′ UTRs and polycytidylated mature mRNAs. In this study, we analyzed transcript termini using circular RT-PCR and PacBio Iso-Seq to survey the 3′ and 5′ UTRs and termini for two green algae, Pediastrum duplex (Class: Chlorophyceae) and Chara vulgaris (Class: Charophyceae). This enabled the comparison of processing in the chlorophyte and charophyte clades of green algae to determine if the differences in mitochondrial mRNA processing pre-date the invasion of land by embryophytes. We report that the 5′ mRNA termini and non-template 3′ termini additions in P. duplex resemble those of C. reinhardtii, suggesting a conservation of mRNA processing among the chlorophyceae. We also report that C. vulgaris mRNA UTRs are much longer than chlorophytic examples, lack polycytidylation, and are polyadenylated similar to embryophytes. This demonstrates that some mitochondrialmore »
-
Abstract Bacterial mRNAs have short life cycles, in which transcription is rapidly followed by translation and degradation within seconds to minutes. The resulting diversity of mRNA molecules across different life-cycle stages impacts their functionality but has remained unresolved. Here we quantitatively map the 3’ status of cellular RNAs in Escherichia coli during steady-state growth and report a large fraction of molecules (median>60%) that are fragments of canonical full-length mRNAs. The majority of RNA fragments are decay intermediates, whereas nascent RNAs contribute to a smaller fraction. Despite the prevalence of decay intermediates in total cellular RNA, these intermediates are underrepresented in the pool of ribosome-associated transcripts and can thus distort quantifications and differential expression analyses for the abundance of full-length, functional mRNAs. The large heterogeneity within mRNA molecules in vivo highlights the importance in discerning functional transcripts and provides a lens for studying the dynamic life cycle of mRNAs.
-
Abstract Heat shock protein 101 (HSP101) in plants, and bacterial and yeast orthologs, is essential for thermotolerance. To investigate thermotolerance mechanisms involving HSP101, we performed a suppressor screen in Arabidopsis thaliana of a missense HSP101 allele (hot1–4). hot1–4 plants are sensitive to acclimation heat treatments that are otherwise permissive for HSP101 null mutants, indicating that the hot1–4 protein is toxic. We report one suppressor (shot2, suppressor of hot1–4 2) has a missense mutation of a conserved residue in CLEAVAGE STIMULATION FACTOR77 (CstF77), a subunit of the polyadenylation complex critical for mRNA 3′ end maturation. We performed ribosomal RNA depletion RNA-Seq and captured transcriptional readthrough with a custom bioinformatics pipeline. Acclimation heat treatment caused transcriptional readthrough in hot1–4 shot2, with more readthrough in heat-induced genes, reducing the levels of toxic hot1–4 protein and suppressing hot1–4 heat sensitivity. Although shot2 mutants develop like the wild type in the absence of stress and survive mild heat stress, reduction of heat-induced genes and decreased HSP accumulation makes shot2 in HSP101 null and wild-type backgrounds sensitive to severe heat stress. Our study reveals the critical function of CstF77 for 3′ end formation of mRNA and the dominant role of HSP101 in dictating the outcome ofmore »