skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structure–function analysis of oncogenic EGFR Kinase Domain Duplication reveals insights into activation and a potential approach for therapeutic targeting
Abstract Mechanistic understanding of oncogenic variants facilitates the development and optimization of treatment strategies. We recently identified in-frame, tandem duplication ofEGFRexons 18 - 25, which causes EGFR Kinase Domain Duplication (EGFR-KDD). Here, we characterize the prevalence ofERBBfamily KDDs across multiple human cancers and evaluate the functional biochemistry of EGFR-KDD as it relates to pathogenesis and potential therapeutic intervention. We provide computational and experimental evidence that EGFR-KDD functions by forming asymmetric EGF-independent intra-molecular and EGF-dependent inter-molecular dimers. Time-resolved fluorescence microscopy and co-immunoprecipitation reveals EGFR-KDD can form ligand-dependent inter-molecular homo- and hetero-dimers/multimers. Furthermore, we show that inhibition of EGFR-KDD activity is maximally achieved by blocking both intra- and inter-molecular dimerization. Collectively, our findings define a previously unrecognized model of EGFR dimerization, providing important insights for the understanding of EGFR activation mechanisms and informing personalized treatment of patients with tumors harboring EGFR-KDD. Finally, we establishERBBKDDs as recurrent oncogenic events in multiple cancers.  more » « less
Award ID(s):
1753060
PAR ID:
10216084
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oncogenic mutations within the epidermal growth factor receptor (EGFR) are found in 15 to 30% of all non–small-cell lung carcinomas. The term exon 19 deletion (ex19del) is collectively used to refer to more than 20 distinct genomic alterations within exon 19 that comprise the most common EGFR mutation subtype in lung cancer. Despite this heterogeneity, clinical treatment decisions are made irrespective of which EGFR ex19del variant is present within the tumor, and there is a paucity of information regarding how individual ex19del variants influence protein structure and function. Herein, we identified allele-specific functional differences among ex19del variants attributable to recurring sequence and structure motifs. We built all-atom structural models of 60 ex19del variants identified in patients and combined molecular dynamics simulations with biochemical and biophysical experiments to analyze three ex19del mutations (E746_A750, E746_S752 > V, and L747_A750 > P). We demonstrate that sequence variation in ex19del alters oncogenic cell growth, dimerization propensity, enzyme kinetics, and tyrosine kinase inhibitor (TKI) sensitivity. We show that in contrast to E746_A750 and E746_S752 > V, the L747_A750 > P variant forms highly active ligand-independent dimers. Enzyme kinetic analysis and TKI inhibition experiments suggest that E746_S752 > V and L747_A750 > P display reduced TKI sensitivity due to decreased adenosine 5′-triphosphate K m . Through these analyses, we propose an expanded framework for interpreting ex19del variants and considerations for therapeutic intervention. 
    more » « less
  2. The anticancer drug Gefitinib is a tyrosine kinase inhibitor with selectivity for the Epidermal Growth Factor Receptor (EGFR/ErbB1). As the C. elegans EGF receptor LET-23 shares notable structural homology over its kinase domain with human EGFR, we wished to examine whether Gefitinib treatment can interfere with LET-23-dependent processes. We show that Gefitinib disrupts C. elegans stress-induced sleep (SIS) but does not impact EGF overexpression-induced sleep nor vulva induction. These findings indicate that Gefitinib does not interfere with LET-23 signaling and impairs SIS through an off-target mechanism. 
    more » « less
  3. Across species, Epidermal Growth Factor (EGF) family ligands and their receptors participate in developmental and physiological cell-cell signaling events. C. elegans possesses a single EGF receptor, LET-23/EGFR, and two characterized EGF ligands. LIN-3/EGF is well-known for its role in vulval induction, and SISS-1/EGF mediates stress-induced sleep. The C. elegans genome harbors another predicted EGF family member, igeg-2, which has not been characterized. To determine if IGEG-2 is a functional EGFR ligand, we examined whether it can activate known LET-23-dependent processes. We found that ubiquitous overexpression of IGEG-2 promotes both vulval induction and sleep, indicating that it is a functional EGF family ligand. The endogenous role of IGEG-2 remains unknown. 
    more » « less
  4. Myeloproliferative neoplasms (MPNs) are frequently driven by mutations within the C-terminal domain (C-domain) of calreticulin (CRT). CRTDel52 and CRTIns5 are recurrent mutations. Oncogenic transformation requires both mutated CRT and the thrombopoietin receptor (Mpl), but the molecular mechanism of CRT-mediated constitutive activation of Mpl is unknown. We show that the acquired C-domain of CRTDel52 mediates both Mpl binding and disulfide-linked CRTDel52 dimerization. Cysteine mutations within the novel C-domain (C400A and C404A) and the conserved N-terminal domain (N-domain; C163A) of CRTDel52 are required to reduce disulfide-mediated dimers and multimers of CRTDel52. Based on these data and published structures of CRT oligomers, we identify an N-domain dimerization interface relevant to both WT CRT and CRTDel52. Elimination of disulfide bonds and ionic interactions at both N-domain and C-domain dimerization interfaces is required to abrogate the ability of CRTDel52 to mediate cell proliferation via Mpl. Thus, MPNs exploit a natural dimerization interface of CRT combined with C-domain gain of function to achieve cell transformation. 
    more » « less
  5. Activation of the epidermal growth factor (EGF) receptor (EGFR) at the cell surface initiates signaling through the RAS-RAF-MAPK/ERK1/2 pathway and receptor endocytosis. Whether this signaling continues from endosomes remains unclear, because RAS is predominantly located on the plasma membrane, and the localization of endogenous RAF kinases, downstream effectors of RAS, is not defined. To examine RAF localization, we labeled endogenous RAF1 with mVenus using gene editing. From 10 to 15% of RAF1-mVenus (<2000 molecules/cell), which was initially entirely cytosolic, transiently translocated to the plasma membrane after EGF stimulation. Following an early burst of translocation, the membrane-associated RAF1-mVenus was undetectable by microscopy or subcellular fractionation, and this pool was estimated to be <200 molecules per cell. In contrast, persistent EGF-dependent translocation of RAF1-mVenus to the plasma membrane was driven by the RAF inhibitor sorafenib, which increases the affinity of Ras-GTP:RAF1 interactions. RAF1-mVenus was not found in EGFR-containing endosomes under any conditions. Computational modeling of RAF1 dynamics revealed that RAF1 membrane abundance is controlled most prominently by association and dissociation rates from RAS-GTP and by RAS-GTP concentration. The model further suggested that the relatively protracted activation of the RAF-MEK1/2-ERK1/2 module, in comparison with RAF1 membrane localization, may involve multiple rounds of cytosolic RAF1 rebinding to active RAS at the membrane. 
    more » « less