skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of a questionnaire on teachers' knowledge of language as an epistemic tool
We report on the development of a new instrument for measuring teachers' knowledge of language as an epistemic tool in science classes. Language is essential for science learning, as all learning requires the use of language to constitute one's own ideas and to engage with others' ideas. Teachers with knowledge of language as an epistemic tool can recognize the ways that language allows students to generate and validate knowledge for themselves, rather than to replicate canonical knowledge transmitted by other sources.We used a construct‐driven development approach with iterations of domain analysis, item revision, teacher feedback, expert review, and item piloting to address the content, substance, and structure aspects of validity. Data from 158 preservice and in‐service teachers on 27 preliminary items were collected. Findings from Rasch measurement modeling indicate a single dimension fits the items well and can distinguish teachers of higher and lower knowledge. We revised and selected 15 items for an updated instrument. This contributes to ongoing measurement projects and provides a potential instrument for future, broader use by the field to gauge teachers' knowledge of language as an epistemic tool.  more » « less
Award ID(s):
1812576
PAR ID:
10216126
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of research in science teaching
ISSN:
1098-2736
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Teachers must know how to use language to support students in knowledge generation environments that align to the Next Generation Science Standards. To measure this knowledge, this study refines a survey on teachers’ knowledge of language as an epistemic tool. Rasch modelling was used to examine 15 items’ fit statistics and the functioning of a previously-designed questionnaire’s response categories. Cronbach’s alpha reliability was also examined. Additionally, interviews were used to investigate teachers’ interpretations of each item to identify ambiguous items. The results indicated that three ambiguous items were deleted based on qualitative data and three more items were deleted because of negative correlation and mismatched fit statistics. Finally, we present a revised language questionnaire with nine items and acceptable correlation and good fit statistics, with utility for science education researchers and teacher educators. This research contributes a revised questionnaire to measure teachers’ knowledge of language that could inform professional development efforts. This research also describes instrument refinement processes that could be applied elsewhere. 
    more » « less
  2. null (Ed.)
    Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education. Despite the increased presence of engineering and integrated STEM education in K-12 education, there are several concerns to consider. One concern is the limited availability of observation instruments appropriate for instruction where multiple STEM disciplines are present and integrated with one another. Addressing this concern requires the development of a new observation instrument, designed with integrated STEM instruction in mind. An instrument such as this has implications for both research and practice. For example, research using this instrument could help educators compare integrated STEM instruction across grade bands. Additionally, this tool could be useful in the preparation of pre-service teachers and professional development of in-service teachers new to integrated STEM education and formative learning through professional learning communities or classroom coaching. The work presented here describes in detail the development of an integrated STEM observation instrument that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the instrument began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education. As part of the instrument development process, the project team had access to over 2000 classroom videos where integrated STEM education took place. Initial analysis of a selection of these videos helped the project team write a preliminary draft instrument consisting of 52 items. Through several rounds of revisions, including the construction of detailed scoring levels of the items and collapsing of items that significantly overlapped, and piloting of the instrument for usability, items were added, edited, and/or removed for various reasons. These reasons included issues concerning the intricacy of the observed phenomenon or the item not being specific to integrated STEM education (e.g., questioning). In its final form, the instrument consists of 10 items, each comprising four descriptive levels. Each item is also accompanied by a set of user guidelines, which have been refined by the project team as a result of piloting the instrument and reviewed by external experts in the field. The instrument has shown to be reliable with the project team and further validation is underway. This instrument will be of use to a wide variety of educators and educational researchers looking to understand the implementation of integrated STEM education in K-12 science and engineering classrooms. 
    more » « less
  3. null (Ed.)
    Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education. Despite the increased presence of engineering and integrated STEM education in K-12 education, there are several concerns to consider. One concern is the limited availability of observation instruments appropriate for instruction where multiple STEM disciplines are present and integrated with one another. Addressing this concern requires the development of a new observation instrument, designed with integrated STEM instruction in mind. An instrument such as this has implications for both research and practice. For example, research using this instrument could help educators compare integrated STEM instruction across grade bands. Additionally, this tool could be useful in the preparation of pre-service teachers and professional development of in-service teachers new to integrated STEM education and formative learning through professional learning communities or classroom coaching. The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education. As part of the instrument development process, the project team had access to over 2000 classroom videos where integrated STEM education took place. Initial analysis of a selection of these videos helped the project team write a preliminary draft instrument consisting of 79 items. Through several rounds of revisions, including the construction of detailed scoring levels of the items and collapsing of items that significantly overlapped, and piloting of the instrument for usability, items were added, edited, and/or removed for various reasons. These reasons included issues concerning the intricacy of the observed phenomenon or the item not being specific to integrated STEM education (e.g., questioning). In its final form, the STEM-OP consists of 10 items, each comprising four descriptive levels. Each item is also accompanied by a set of user guidelines, which have been refined by the project team as a result of piloting the instrument and reviewed by external experts in the field. The instrument has shown to be reliable with the project team and further validation is underway. The STEM-OP will be of use to a wide variety of educators and educational researchers looking to understand the implementation of integrated STEM education in K-12 science and engineering classrooms. 
    more » « less
  4. The shift towards Next Generation Science Standards represents a paradigmatic change in teaching, transitioning from knowledge transmission to knowledge generation approaches. This reform underscores the complexity of teaching expertise, extending beyond mere knowledge to require a profound comprehension of generative learning environments. In this study, we explore Adaptive Teaching Expertise (AdTex), defining it as a teacher’s capacity characterized by fluidity and reflexiveness in teaching dynamics, rather than just flexibility. Through a complexity framing approach, we delineate three layers of AdTex: the visible actions of teachers, the semi-visible use of epistemic tools such as language, dialogue, and argument, and the tacit orientations towards learning that encompass epistemological, ontological, and axiological dimensions. Our research primarily investigates the intricate relationship between the epistemic tool and orientation layers. Our findings highlight the significance of an interconnected understanding and the impact of philosophical orientations on adaptive teaching practices. A notable contribution of this study is the development of a framework that articulates the belief and knowledge systems crucial for fostering generative learning environments, alongside the introduction of complexity maps to illustrate the interplay among these subsystems. 
    more » « less
  5. Science teacher knowledge for effective teaching consists of multiple knowledge bases, one of which includes science content knowledge and pedagogical knowledge. With the inclusion of science and engineering practices into the national science education standards in the US, teachers’ content knowledge goes beyond subject matter knowledge and into the realm of how scientists use practices for scientific inquiry. This study compares two approaches to constructing and validating two different versions of a survey that aims to measure the construct of teachers’ knowledge of models and modeling in science teaching. In the first version, a 24-item Likert scale survey containing content and pedagogical knowledge items was found to lack the ability to distinguish different knowledge levels for respondents, and validation through factor analysis indicated content and pedagogical knowledge items could not be separated. Findings from the validation results of the first survey influenced revisions to the second version of the survey, a 25-item multiple-choice instrument. The second survey employed a competence model framework for models and modeling for item specifications, and results from exploratory factor analysis revealed this approach to assessing the construct to be more appropriate. Recommendations for teacher assessment of science practices using competence models and points to consider in survey design, including norm-referenced or criterion-referenced tests, are discussed. 
    more » « less