This work presents chemically stable and biodegradable hydrogel beads for the isolation of circulating tumor cells (CTCs) and circulating exosomes in liquid biopsy. The liquid biopsy hydrogel beads (LBbeads) consisting of alginate and poly(vinyl alcohol) hydrogels show both chemical stability and stimuli‐degradable characteristics. Unlike single‐component hydrogels, this hybrid form is not easily degraded by buffers or cell culture media while its degradable characteristic remains; thus, it is useful in bio‐applications requiring multi‐step processes with various reagents and lengthy incubation periods. We applied our platform to clinical samples for isolating two promising circulating biomarkers for a liquid biopsy, CTCs and exosomes, by conjugating the hydrogel surface with anti‐EpCAM and anti‐CD63 antibodies, respectively, thus achieving 37.4 CTCs and comparable amount of exosome recovery per 1 milliliter of blood. The results show easy device‐free isolation and retrieval of CTCs and exosomes, with recovered circulating biomarkers successfully analyzed by western blot analysis and fluorescence microscopy. We believe that this simple and versatile platform enables us to isolate prominent circulating biomarkers for clinical use in cancer diagnosis.
Traumatic brain injury (TBI) is a global cause of morbidity and mortality. Initial management and risk stratification of patients with TBI is made difficult by the relative insensitivity of screening radiographic studies as well as by the absence of a widely available, noninvasive diagnostic biomarker. In particular, a blood-based biomarker assay could provide a quick and minimally invasive process to stratify risk and guide early management strategies in patients with mild TBI (mTBI). Analysis of circulating exosomes allows the potential for rapid and specific identification of tissue injury. By applying acoustofluidic exosome separation—which uses a combination of microfluidics and acoustics to separate bioparticles based on differences in size and acoustic properties—we successfully isolated exosomes from plasma samples obtained from mice after TBI. Acoustofluidic isolation eliminated interference from other blood components, making it possible to detect exosomal biomarkers for TBI via flow cytometry. Flow cytometry analysis indicated that exosomal biomarkers for TBI increase in the first 24 h following head trauma, indicating the potential of using circulating exosomes for the rapid diagnosis of TBI. Elevated levels of TBI biomarkers were only detected in the samples separated via acoustofluidics; no changes were observed in the analysis of the raw plasma sample. This finding demonstrated the necessity of sample purification prior to exosomal biomarker analysis. Since acoustofluidic exosome separation can easily be integrated with downstream analysis methods, it shows great potential for improving early diagnosis and treatment decisions associated with TBI.
more » « less- Award ID(s):
- 1807601
- NSF-PAR ID:
- 10216242
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Microsystems & Nanoengineering
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2055-7434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
This study investigates the potential use of circulating extracellular vesicles’ (EVs) DNA and protein content as biomarkers for traumatic brain injury (TBI) in a mouse model. Despite an overall decrease in EVs count during the acute phase, there was an increased presence of exosomes (CD63+ EVs) during acute and an increase in microvesicles derived from microglia/macrophages (CD11b+ EVs) and astrocytes (ACSA-2+ EVs) in post-acute TBI phases, respectively. Notably, mtDNA exhibited an immediate elevation post-injury. Neuronal (NFL) and microglial (Iba1) markers increased in the acute, while the astrocyte marker (GFAP) increased in post-acute TBI phases. Novel protein biomarkers (SAA, Hp, VWF, CFD, CBG) specific to different TBI phases were also identified. Biostatistical modeling and machine learning identified mtDNA and SAA as decisive markers for TBI detection. These findings emphasize the importance of profiling EVs’ content and their dynamic release as an innovative diagnostic approach for TBI in liquid biopsiesmore » « less
-
Exosomes play a crucial role in the progression of infectious diseases, as exosome release and biogenesis are affected by external factors, such as pathogenic infections. Pyrogens may aide in the progression of diseases by triggering inflammation, endothelial cell injury, and arterial plaque rupture, all of which can lead to acute coronary disease, resulting in cardiac tissue death and the onset of a cardiac event (CE). To better understand the effects of Gram-negative bacterial infections on exosome composition and biogenesis, we examined exosome characteristics after treatment of AC16 human cardiomyocytes with lipopolysaccharide (LPS), which served as a model system for Gram-negative bacterial infection. Using increasing doses (0, 0.1, 1, or 10 µg) of LPS, we showed that treatment with LPS substantially altered the composition of AC16-derived exosomes. Both the relative size and the quantity (particles/mL) of exosomes were decreased significantly at all tested concentrations of LPS treatment compared to the untreated group. In addition, LPS administration reduced the expression of exosomal proteins that are related to exosomal biogenesis. Conversely, we observed an increase in immunomodulators present after LPS administration. This evaluation of the impact of LPS on cardiac cell death and exosome composition will yield new insight into the importance of exosomes in a variety of physiological and pathological processes as it relates to disease progression, diagnosis, and treatment.more » « less
-
Abstract Exosomes are 50‐ to 150‐nm‐diameter extracellular vesicles secreted by all mammalian cells except mature red blood cells and contribute to diverse physiological and pathological functions within the body. Many methods have been used to isolate and analyze exosomes, resulting in inconsistencies across experiments and raising questions about how to compare results obtained using different approaches. Questions have also been raised regarding the purity of the various preparations with regard to the sizes and types of vesicles and to the presence of lipoproteins. Thus, investigators often find it challenging to identify the optimal exosome isolation protocol for their experimental needs. Our laboratories have compared ultracentrifugation and commercial precipitation‐ and column‐based exosome isolation kits for exosome preparation. Here, we present protocols for exosome isolation using two of the most commonly used methods, ultracentrifugation and precipitation, followed by downstream analyses. We use NanoSight nanoparticle tracking analysis and flow cytometry (Cytek®) to determine exosome concentrations and sizes. Imaging flow cytometry can be utilized to both size exosomes and immunophenotype surface markers on exosomes (ImageStream®). High‐performance liquid chromatography followed by nano‐flow liquid chromatography–mass spectrometry (LCMS) of the exosome fractions can be used to determine the presence of lipoproteins, with LCMS able to provide a proteomic profile of the exosome preparations. We found that the precipitation method was six times faster and resulted in a ∼2.5‐fold higher concentration of exosomes per milliliter compared to ultracentrifugation. Both methods yielded extracellular vesicles in the size range of exosomes, and both preparations included apoproteins. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : Pre‐analytic fluid collection and processingBasic Protocol 2 : Exosome isolation by ultracentrifugationAlternate Protocol 1 : Exosome isolation by precipitationBasic Protocol 3 : Analysis of exosomes by NanoSight nanoparticle tracking analysisAlternate Protocol 2 : Analysis of exosomes by flow cytometry and imaging flow cytometryBasic Protocol 4 : Downstream analysis of exosomes using high‐performance liquid chromatographyBasic Protocol 5 : Downstream analysis of the exosome proteome using nano‐flow liquid chromatography–mass spectrometry -
Abstract Nanocarrier and exosome encapsulation has been found to significantly increase the efficacy of targeted drug delivery while also minimizing unwanted side effects. However, the development of exosome-encapsulated drug nanocarriers is limited by low drug loading efficiencies and/or complex, time-consuming drug loading processes. Herein, we have developed an acoustofluidic device that simultaneously performs both drug loading and exosome encapsulation. By synergistically leveraging the acoustic radiation force, acoustic microstreaming, and shear stresses in a rotating droplet, the concentration, and fusion of exosomes, drugs, and porous silica nanoparticles is achieved. The final product consists of drug-loaded silica nanocarriers that are encased within an exosomal membrane. The drug loading efficiency is significantly improved, with nearly 30% of the free drug (e.g., doxorubicin) molecules loaded into the nanocarriers. Furthermore, this acoustofluidic drug loading system circumvents the need for complex chemical modification, allowing drug loading and encapsulation to be completed within a matter of minutes. These exosome-encapsulated nanocarriers exhibit excellent efficiency in intracellular transport and are capable of significantly inhibiting tumor cell proliferation. By utilizing physical forces to rapidly generate hybrid nanocarriers, this acoustofluidic drug loading platform wields the potential to significantly impact innovation in both drug delivery research and applications.