skip to main content


Title: The mechanics and dynamics of cancer cells sensing noisy 3D contact guidance

Contact guidance is a major physical cue that modulates cancer cell morphology and motility, and is directly linked to the prognosis of cancer patients. Under physiological conditions, particularly in the three-dimensional (3D) extracellular matrix (ECM), the disordered assembly of fibers presents a complex directional bias to the cells. It is unclear how cancer cells respond to these noncoherent contact guidance cues. Here we combine quantitative experiments, theoretical analysis, and computational modeling to study the morphological and migrational responses of breast cancer cells to 3D collagen ECM with varying degrees of fiber alignment. We quantify the strength of contact guidance using directional coherence of ECM fibers, and find that stronger contact guidance causes cells to polarize more strongly along the principal direction of the fibers. Interestingly, sensitivity to contact guidance is positively correlated with cell aspect ratio, with elongated cells responding more strongly to ECM alignment than rounded cells. Both experiments and simulations show that cell–ECM adhesions and actomyosin contractility modulate cell responses to contact guidance by inducing a population shift between rounded and elongated cells. We also find that cells rapidly change their morphology when navigating the ECM, and that ECM fiber coherence modulates cell transition rates between different morphological phenotypes. Taken together, we find that subcellular processes that integrate conflicting mechanical cues determine cell morphology, which predicts the polarization and migration dynamics of cancer cells in 3D ECM.

 
more » « less
Award ID(s):
2019745 1844627
NSF-PAR ID:
10216292
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
10
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2024780118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Collagen fibers in the 3D tumor microenvironment (TME) exhibit complex alignment landscapes that are critical in directing cell migration through a process called contact guidance. Previous in vitro work studying this phenomenon has focused on quantifying cell responses in uniformly aligned environments. However, the TME also features short‐range gradients in fiber alignment that result from cell‐induced traction forces. Although the influence of graded biophysical taxis cues is well established, cell responses to physiological alignment gradients remain largely unexplored. In this work, fiber alignment gradients in biopsy samples are characterized and recreated using a new microfluidic biofabrication technique to achieve tunable sub‐millimeter to millimeter scale gradients. This study represents the first successful engineering of continuous alignment gradients in soft, natural biomaterials. Migration experiments on graded alignment show that human umbilical vein endothelial cells (HUVECs) exhibit increased directionality, persistence, and speed compared to uniform and unaligned fiber architectures. Similarly, patterned MDA‐MB‐231 breast cancer cell aggregates exhibit biased migration toward increasing fiber alignment, suggesting a role for alignment gradients as a taxis cue. This user‐friendly approach, requiring no specialized equipment, is anticipated to offer new insights into the biophysical cues that cells interpret as they traverse the extracellular matrix (ECM), with broad applicability in healthy and diseased tissue environments.

     
    more » « less
  2. During mitosis, cells round up and utilize the interphase adhesion sites within the fibrous extracellular matrix (ECM) as guidance cues to orient the mitotic spindles. Here, using suspended ECM-mimicking nanofiber networks, we explore mitotic outcomes and error distribution for various interphase cell shapes. Elongated cells attached to single fibers through two focal adhesion clusters (FACs) at their extremities result in perfect spherical mitotic cell bodies that undergo significant 3-dimensional (3D) displacement while being held by retraction fibers (RFs). Increasing the number of parallel fibers increases FACs and retraction fiber-driven stability, leading to reduced 3D cell body movement, metaphase plate rotations, increased interkinetochore distances, and significantly faster division times. Interestingly, interphase kite shapes on a crosshatch pattern of four fibers undergo mitosis resembling single-fiber outcomes due to rounded bodies being primarily held in position by RFs from two perpendicular suspended fibers. We develop a cortex–astral microtubule analytical model to capture the retraction fiber dependence of the metaphase plate rotations. We observe that reduced orientational stability, on single fibers, results in increased monopolar mitotic defects, while multipolar defects become dominant as the number of adhered fibers increases. We use a stochastic Monte Carlo simulation of centrosome, chromosome, and membrane interactions to explain the relationship between the observed propensity of monopolar and multipolar defects and the geometry of RFs. Overall, we establish that while bipolar mitosis is robust in fibrous environments, the nature of division errors in fibrous microenvironments is governed by interphase cell shapes and adhesion geometries. 
    more » « less
  3. Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple “cryptic leading edges” within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as “cell polarization barriers,” decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.

     
    more » « less
  4. Abstract

    Cell shape is linked to cell function. The significance of cell morphodynamics, namely the temporal fluctuation of cell shape, is much less understood. Here we study the morphodynamics of MDA-MB-231 cells in type I collagen extracellular matrix (ECM). We systematically vary ECM physical properties by tuning collagen concentrations, alignment, and gelation temperatures. We find that morphodynamics of 3D migrating cells are externally controlled by ECM mechanics and internally modulated by Rho/ROCK-signaling. We employ machine learning to classify cell shape into four different morphological phenotypes, each corresponding to a distinct migration mode. As a result, we map cell morphodynamics at mesoscale into the temporal evolution of morphological phenotypes. We characterize the mesoscale dynamics including occurrence probability, dwell time and transition matrix at varying ECM conditions, which demonstrate the complex phenotype landscape and optimal pathways for phenotype transitions. In light of the mesoscale dynamics, we show that 3D cancer cell motility is a hidden Markov process whereby the step size distributions of cell migration are coupled with simultaneous cell morphodynamics. Morphological phenotype transitions also facilitate cancer cells to navigate non-uniform ECM such as traversing the interface between matrices of two distinct microstructures. In conclusion, we demonstrate that 3D migrating cancer cells exhibit rich morphodynamics that is controlled by ECM mechanics, Rho/ROCK-signaling, and regulate cell motility. Our results pave the way to the functional understanding and mechanical programming of cell morphodynamics as a route to predict and control 3D cell motility.

     
    more » « less
  5. Contact inhibition of locomotion (CIL), in which cells repolarize and move away from contact, is now established as a fundamental driving force in development, repair, and disease biology. Much of what we know of CIL stems from studies on two-dimensional (2D) substrates that do not provide an essential biophysical cue—the curvature of extracellular matrix fibers. We discover rules controlling outcomes of cell–cell collisions on suspended nanofibers and show them to be profoundly different from the stereotyped CIL behavior on 2D substrates. Two approaching cells attached to a single fiber do not repolarize upon contact but rather usually migrate past one another. Fiber geometry modulates this behavior; when cells attach to two fibers, reducing their freedom to reorient, only one cell repolarizes on contact, leading to the cell pair migrating as a single unit. CIL outcomes also change when one cell has recently divided and moves with high speed—cells more frequently walk past each other. Our computational model of CIL in fiber geometries reproduces the core qualitative results of the experiments robustly to model parameters. Our model shows that the increased speed of postdivision cells may be sufficient to explain their increased walk-past rate. We also identify cell–cell adhesion as a key mediator of collision outcomes. Our results suggest that characterizing cell–cell interactions on flat substrates, channels, or micropatterns is not sufficient to predict interactions in a matrix—the geometry of the fiber can generate entirely new behaviors.

     
    more » « less