skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release
Herbivore-induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this ‘cry for help’ has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs. To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR-Cas9) and chemical (GC-MS analysis) approaches. We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillar Helicoverpa zea on leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding by H. zea, including (Z)-3-hexenol, (Z)-jasmone and (Z)-3-hexenyl acetate, which are important airborne signals in plant defenses. Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission.  more » « less
Award ID(s):
1645548
PAR ID:
10216506
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
New phytologist
Volume:
NA
Issue:
NA
ISSN:
0028-646X
Page Range / eLocation ID:
1-11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Herbivore‐induced plant volatiles (HIPVs) are widely recognized as an ecologically important defensive response of plants against herbivory. Although the induction of this ‘cry for help’ has been well documented, only a few studies have investigated the inhibition of HIPVs by herbivores and little is known about whether herbivores have evolved mechanisms to inhibit the release of HIPVs.To examine the role of herbivore effectors in modulating HIPVs and stomatal dynamics, we conducted series of experiments combining pharmacological, surgical, genetic (CRISPR‐Cas9) and chemical (GC‐MS analysis) approaches.We show that the salivary enzyme, glucose oxidase (GOX), secreted by the caterpillarHelicoverpa zeaon leaves, causes stomatal closure in tomato (Solanum lycopersicum) within 5 min, and in both tomato and soybean (Glycine max) for at least 48 h. GOX also inhibits the emission of several HIPVs during feeding byH. zea, including (Z)‐3‐hexenol, (Z)‐jasmone and (Z)‐3‐hexenyl acetate, which are important airborne signals in plant defenses.Our findings highlight a potential adaptive strategy where an insect herbivore inhibits plant airborne defenses during feeding by exploiting the association between stomatal dynamics and HIPV emission. 
    more » « less
  2. null (Ed.)
    Salivary glucose oxidase (GOX) is one of the most abundant salivary proteins in generalist caterpillar Helicoverpa zea. GOX has been hypothesized to benefit H. zea by modulating direct defense responses of plants. Although the function of this protein has been studied, its role remains unclear. The study aims to test the hypothesis that GOX induces similar defensive responses among Solanaceous plants, and has similar consequences for larval performance of H. zea. Using six different plants in Solanaceae, including tomato (Solanum lycopersicum cv. Better Boy and S. lycopersicum var. cerasiforme), bell pepper (Capsicum annuum cv. Revolution), habanero pepper (Capsicum chinense), tomatillo (Physalis philadelphica cv. Tamayo), and tobacco (N. benthamiana), we tested the impact of GOX on induction of two common defense proteins, trypsin protease inhibitors (TPI) and polyphenol oxidases (PPO), and on relative growth rate of H. zea larvae. We found that GOX specifically induced TPI activity in tomato and habanero pepper, and the level of defense protein depended on leaf location. In addition, prior application of GOX did not increase the performance of H. zea in any plant tested. Changes in performance in tomato and habanero pepper matched the induction of TPI. In summary, our findings indicate that GOX induces similar defense responses in some Solanacean plants, but largely depends on species/genotype of plant, and that the presence of GOX did not benefit larval H. zea by modulating direct defense responses of plants. Other mechanisms must be involved in driving the evolution of this salivary protein. 
    more » « less
  3. Abstract Although invertebrate herbivores commonly impact terrestrial plant diseases by facilitating transmission of plant pathogens and increasing host susceptibility to infection via wounding, less is known about the role of herbivores in marine plant disease dynamics. Importantly, transmission via herbivores may not be required in the ocean since saline ocean waters support pathogen survival and transmission. Through laboratory experiments with eelgrass (Zostera marina), we showed that isopods (Pentidotea wosnesenskii) and snails (Lacunaspp.) created grazing scars that increased disease severity and thus indirectly facilitated transmission ofLabyrinthula zosterae(Lz), a protist that causes seagrass wasting disease. Experiments also quantified different feeding preferences among herbivores: Amphipods (Ampithoe lacertosa) selectively consumed diseased eelgrass, while isopods and snails selectively grazed asymptomatic leaves, suggesting different herbivore taxa may have contrasting impacts on disease dynamics. Our experiments show no sign that herbivores directly vector Lz from diseased to asymptomatic eelgrass. However, we isolated live Lz from isopod, amphipod, and snail feces and detected Lz with quantitative polymerase chain reaction in amphipods and snails, suggesting that herbivores eating diseased eelgrass could pass the live pathogen. Finally, field surveys demonstrated a close association between seagrass wasting disease and invertebrate grazing scars; disease prevalence was 29 ± 4.7% (95% CI) higher on eelgrass leaves with herbivore scars. Collectively, these findings show that some herbivores can increase eelgrass disease risk by facilitating the spread of an important pathogen via wounding, but not via direct transmission. Thus, herbivores may play different roles in plant disease dynamics in terrestrial versus marine ecosystems depending on the pathogen's ability to survive and transmit without a vector. 
    more » « less
  4. null (Ed.)
    1. Plants face many environmental stresses that can impact their survival, development and fitness. Insects are the most diverse, abundant and threatening herbivores in nature. As a consequence, plants produce direct chemical and physical defences to reduce herbivory. They also release volatiles to recruit natural enemies that indirectly protect them from herbivory. The recruitment of parasitic wasps can benefit plant fitness because they ultimately kill their insect hosts. 2. Recently, studies showed that parasitoids can indirectly mediate plant defences by modulating herbivore oral secretions. In addition to the direct benefits of parasitoids in terms of reducing herbivore survival, we tested if the reduction in induced defences by parasitized caterpillars compared to non-parasitized caterpillars may reduce the costs associated with defence expression. 3. We provide evidence that tomato plants treated with saliva from parasitized caterpillars have significantly higher fitness parameters including increased flower numbers (16.3%) and heavier fruit weight (13.5%), compared to plants treated with saliva from non-parasitized caterpillars. Since plants were grown without actual herbivores, the higher values for these fitness parameters were due to lower costs of induced defences and not due to reduced herbivory by parasitized caterpillars. Furthermore, the resulting seed germination time was shorter and the germination rate was higher when the maternal plants were previously exposed to parasitized herbivore treatment compared to control (non-treated) plants. 4. Overall, application of saliva did not result in transgenerational priming of offspring defence responses. However, offspring of parents exposed to caterpillar saliva had lower constitutive levels and higher induced levels of trypsin inhibitor than offspring from unexposed parents. 5. This study shows that the saliva of parasitized caterpillars can modulate plant defences and further demonstrates that the lower induction of plant defences is associated with elevated plant fitness in the absence of herbivore feeding, suggesting that induced plant defences are costly. 
    more » « less
  5. Plant toxicity shapes the dietary choices of herbivores. Especially when herbivores sequester plant toxins, they may experience a trade-off between gaining protection from natural enemies and avoiding toxicity. The availability of toxins for sequestration may additionally trade off with the nutritional quality of a potential food source for sequestering herbivores. We hypothesized that diet mixing might allow a sequestering herbivore to balance nutrition and defence (via sequestration of plant toxins). Accordingly, here we address diet mixing and sequestration of large milkweed bugs (Oncopeltus fasciatus) when they have differential access to toxins (cardenolides) in their diet. In the absence of toxins from a preferred food (milkweed seeds), large milkweed bugs fed on nutritionally adequate non-toxic seeds, but supplemented their diet by feeding on nutritionally poor, but cardenolide-rich milkweed leaf and stem tissues. This dietary shift corresponded to reduced insect growth but facilitated sequestration of defensive toxins. Plant production of cardenolides was also substantially induced by bug feeding on leaf and stem tissues, perhaps benefitting this cardenolide-resistant herbivore. Thus, sequestration appears to drive diet mixing in this toxic plant generalist, even at the cost of feeding on nutritionally poor plant tissue. 
    more » « less