skip to main content


Title: Extending Ozone‐Precursor Relationships in China From Peak Concentration to Peak Time
Abstract

High ozone concentrations have become the major summertime air quality problem in China. Extensive in situ observations are deployed for developing strategies to effectively control the emissions of ozone precursors, that is, nitrogen oxides (NOX = NO + NO2) and volatile organic compounds (VOCs). The modeling analysis of in situ observations often makes uses of the dependence of ozone peak concentration on NOXand VOC emissions, because ozone observations are among the most widely available air quality measurements. To extract more information from regulatory ozone observations, we extend the ozone‐precursor relationship to ozone peak time in this study. We find that the sensitivities of ozone peak time and concentration are complementary for regions with large anthropogenic emissions such as China. The ozone peak time is sensitive to both VOC and NOXemissions, and the sensitivity is nearly linear in the transition regime of ozone production compared to the changing ozone peak concentration sensitivity in this regime, making the diagnostics of ozone peak time particularly valuable. The extended ozone‐precursor relationships can be readily applied to understand the effects on ozone by emission changes of NOXand VOC and to assess potential biases of NOXand VOC emission inventories. These observation constraints based on regulatory ozone observations can complement the other measurement and modeling analysis methods nicely. Furthermore, we suggest that the ozone peak time sensitivity we discussed here to be used as a model evaluation measure before the empirical kinetic modeling approach (EKMA) diagram is applied to understand the effectiveness of emission control on ozone concentrations.

 
more » « less
Award ID(s):
1743401
NSF-PAR ID:
10453532
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
22
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Our work explores the impact of two important dimensions of landsystem changes, land use and land cover change (LULCC) as well as directagricultural reactive nitrogen (Nr) emissions from soils, on ozone(O3) and fine particulate matter (PM2.5) in terms of air quality overcontemporary (1992 to 2014) timescales. We account for LULCC andagricultural Nr emissions changes with consistent remote sensingproducts and new global emission inventories respectively estimating theirimpacts on global surface O3 and PM2.5 concentrations as well as Nrdeposition using the GEOS-Chem global chemical transport model. Over thistime period, our model results show that agricultural Nr emissionchanges cause a reduction of annual mean PM2.5 levels over Europe andnorthern Asia (up to −2.1 µg m−3) while increasing PM2.5 levels in India, China and the eastern US (up to +3.5 µg m−3). Land cover changes induce small reductions in PM2.5 (up to −0.7 µg m−3) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO2, SO2). Agricultural Nr emissionchanges only lead to minor changes (up to ±0.6 ppbv) in annual meansurface O3 levels, mainly over China, India and Myanmar. Meanwhile, ourmodel result suggests a stronger impact of LULCC on surface O3 over the time period across South America; the combination of changes in drydeposition and isoprene emissions results in −0.8 to +1.2 ppbv surfaceozone changes. The enhancement of dry deposition reduces the surface ozone level (up to −1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to +0.6 ppbv) over sub-Saharan Africa. Incertain regions, the combined effects of LULCC and agricultural Nr emission changes on O3 and PM2.5 air quality can be comparable (>20 %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural Nr emissions leads to a net increase in global land area (+3.67×106km2) that potentially faces exceedance of the critical Nr load (>5 kg N ha−1 yr−1). Our result demonstrates the impacts of contemporary LULCC and agricultural Nr emission changes on PM2.5 and O3 in terms of air quality, as well as the importanceof land system changes for air quality over multidecadal timescales. 
    more » « less
  2. Abstract. A new technique was used to directly measure O3 response to changes inprecursor NOx and volatile organic compound (VOC) concentrations in the atmosphere using threeidentical Teflon smog chambers equipped with UV lights. One chamberserved as the baseline measurement for O3 formation, one chamber addedNOx, and one chamber added surrogate VOCs (ethylene, m-xylene,n-hexane). Comparing the O3 formation between chambers over a3-hour UV cycle provides a direct measurement of O3 sensitivity toprecursor concentrations. Measurements made with this system at Sacramento,California, between April–December 2020 revealed that theatmospheric chemical regime followed a seasonal cycle. O3 formation wasVOC-limited (NOx-rich) during the early spring, transitioned toNOx-limited during the summer due to increased concentrations ofambient VOCs with high O3 formation potential, and then returned toVOC-limited (NOx-rich) during the fall season as the concentrations ofambient VOCs decreased and NOx increased. This seasonal pattern ofO3 sensitivity is consistent with the cycle of biogenic emissions inCalifornia. The direct chamber O3 sensitivity measurements matchedsemi-direct measurements of HCHO/NO2 ratios from the TROPOsphericMonitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor (Sentinel-5P) satellite. Furthermore, the satellite observations showed thatthe same seasonal cycle in O3 sensitivity occurred over most of theentire state of California, with only the urban cores of the very largecities remaining VOC-limited across all seasons. The O3-nonattainmentdays (MDA8 O3>70 ppb) have O3 sensitivity in theNOx-limited regime, suggesting that a NOx emissions controlstrategy would be most effective at reducing these peak O3concentrations. In contrast, a large portion of the days with MDA8 O3concentrations below 55 ppb were in the VOC-limited regime, suggesting thatan emissions control strategy focusing on NOx reduction would increaseO3 concentrations. This challenging situation suggests that emissionscontrol programs that focus on NOx reductions will immediately lowerpeak O3 concentrations but slightly increase intermediate O3concentrations until NOx levels fall far enough to re-enter theNOx-limited regime. The spatial pattern of increasing and decreasingO3 concentrations in response to a NOx emissions control strategyshould be carefully mapped in order to fully understand the public healthimplications. 
    more » « less
  3. Abstract. We investigated the ozone pollution trend and its sensitivity to keyprecursors from 1990 to 2015 in the United States using long-term EPA Air Quality System (AQS)observations and mesoscale simulations. The modeling system, a coupledregional climate–air quality model (CWRF-CMAQ; Climate-Weather Research Forecast andthe Community Multiscale Air Quality), captured well the summersurface ozone pollution during the past decades, having a mean slope oflinear regression with AQS observations of ∼0.75. While theAQS network has limited spatial coverage and measures only a few keychemical species, CWRF-CMAQ provides comprehensive simulations to enablea more rigorous study of the change in ozone pollution and chemicalsensitivity. Analysis of seasonal variations and diurnal cycle of ozoneobservations showed that peak ozone concentrations in the summer afternoondecreased ubiquitously across the United States, up to 0.5 ppbv yr−1 in majornon-attainment areas such as Los Angeles, while concentrations at certainhours such as the early morning and late afternoon increased slightly.Consistent with the AQS observations, CMAQ simulated a similar decreasingtrend of peak ozone concentrations in the afternoon, up to 0.4 ppbv yr−1, andincreasing ozone trends in the early morning and late afternoon. A monotonicallydecreasing trend (up to 0.5 ppbv yr−1) in the odd oxygen (Ox=O3+NO2) concentrations are simulated by CMAQ at all daytime hours.This result suggests that the increased ozone in the early morning and lateafternoon was likely caused by reduced NO–O3 titration, driven bycontinuous anthropogenic NOx emission reductions in the past decades.Furthermore, the CMAQ simulations revealed a shift in chemical regimes ofozone photochemical production. From 1990 to 2015, surface ozone productionin some metropolitan areas, such as Baltimore, has transited from aVOC-sensitive environment (>50 % probability) to aNOx-sensitive regime. Our results demonstrated that the long-termCWRF-CMAQ simulations can provide detailed information of the ozonechemistry evolution under a changing climate and may partially explain theUS ozone pollution responses to regional and national regulations. 
    more » « less
  4. Abstract

    An extensive set of primary and secondary pollutants was measured at a ground site in a remote location in the Yellow River Delta, China during the Ozone Photochemistry and Export from China Experiment (OPECE) from March to April 2018. The measurements include volatile organic compounds (VOCs), peroxyacyl nitrates (PANs), ozone (O3), particulate species, nitrogen oxides (NOx), and SO2. Observed VOC mixing ratios were comparable to those measured in heavily polluted cities in the U.S. and China. The VOC source signatures suggest a strong influence from Oil and Natural Gas (O&NG) emissions with potentially large contributions from Liquified Petroleum Gas (LPG) sources as well. Consistently elevated concentrations of O3, PAN, and its rarely measured homologs peroxybenzoylic nitric anhydride (PBzN) and peroxyacrylic nitric anhydride (APAN) at the OPECE site indicate complex photochemistry in a heterogeneous VOC environment. Diagnostic 0‐D box model simulations are used to investigate the budgets of ROx(OH + HO2 + RO2), and the rate and efficiency of O3production. Model sensitivity calculations indicate that O3production at OPECE site is VOC limited in spring. This suggests that reduction in VOCs should be a priority for reducing O3, where production and fugitive emissions from O&NG provide an attractive target. While initial reductions in NOxmight increase O3production, reduction of NOxalong with VOCs will be a necessary step to achieve long‐term ozone reduction.

     
    more » « less
  5. null (Ed.)
    The spread of the COVID-19 pandemic and consequent lockdowns all over the world have had various impacts on atmospheric quality. This study aimed to investigate the impact of the lockdown on the air quality of Nanjing, China. The off-axis measurements from state-of-the-art remote-sensing Multi-Axis Differential Optical Absorption Spectroscope (MAX-DOAS) were used to observe the trace gases, i.e., Formaldehyde (HCHO), Nitrogen Dioxide (NO2), and Sulfur Dioxide (SO2), along with the in-situ time series of NO2, SO2 and Ozone (O3). The total dataset covers the span of five months, from 1 December 2019, to 10 May 2020, which comprises of four phases, i.e., the pre lockdown phase (1 December 2019, to 23 January 2020), Phase-1 lockdown (24 January 2020, to 26 February 2020), Phase-2 lockdown (27 February 2020, to 31 March 2020), and post lockdown (1 April 2020, to 10 May 2020). The observed results clearly showed that the concentrations of selected pollutants were lower along with improved air quality during the lockdown periods (Phase-1 and Phase-2) with only the exception of O3, which showed an increasing trend during lockdown. The study concluded that limited anthropogenic activities during the spring festival and lockdown phases improved air quality with a significant reduction of selected trace gases, i.e., NO2 59%, HCHO 38%, and SO2 33%. We also compared our results with 2019 data for available gases. Our results imply that the air pollutants concentration reduction in 2019 during Phase-2 was insignificant, which was due to the business as usual conditions after the Spring Festival (Phase-1) in 2019. In contrast, a significant contamination reduction was observed during Phase-2 in 2020 with the enforcement of a Level-II response in lockdown conditions i.e., the easing of the lockdown situation in some sectors during a specific interval of time. The observed ratio of HCHO to NO2 showed that tropospheric ozone production involved Volatile Organic Compounds (VOC) limited scenarios. 
    more » « less