skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cloud and on-premises data center usage, expenditures, and approaches to return on investment: A survey of academic research computing organizations
The landscape of research in science and engineering is heavily reliant on computation and data processing. There is continued and expanded usage by disciplines that have historically used advanced computing resources, new usage by disciplines that have not traditionally used HPC, and new modalities of the usage in Data Science, Machine Learning, and other areas of AI. Along with these new patterns have come new advanced computing resource methods and approaches, including the availability of commercial cloud resources. The Coalition for Academic Scientific Computation (CASC) has long been an advocate representing the needs of academic researchers using computational resources, sharing best practices and offering advice to create a national cyberinfrastructure to meet US science, engineering, and other academic computing needs. CASC has completed the first of what we intend to be an annual survey of academic cloud and data center usage and practices in analyzing return on investment in cyberinfrastructure. Critically important findings from this first survey include the following: many of the respondents are engaged in some form of analysis of return in research computing investments, but only a minority currently report the results of such analyses to their upper-level administration. Most respondents are experimenting with use of commercial cloud resources but no respondent indicated that they have found use of commercial cloud services to create financial benefits compared to their current methods. There is clear correlation between levels of investment in research cyberinfrastructure and the scale of both cpu core-hours delivered and the financial level of supported research grants. Also interesting is that almost every respondent indicated that they participate in some sort of national cooperative or nationally provided research computing infrastructure project and most were involved in academic computing-related organizations, indicating a high degree of engagement by institutions of higher education in building and maintaining national research computing ecosystems. Institutions continue to evaluate cloud-based HPC service models, despite having generally concluded that so far cloud HPC is too expensive to use compared to their current methods.  more » « less
Award ID(s):
1362134 1939140
PAR ID:
10216559
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
PEARC '20: Practice and Experience in Advanced Research Computing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reed, Daniel A.; Lifka, David; Swanson, David; Amaro, Rommie; Wilkins-Diehr, Nancy (Ed.)
    This report summarizes the discussions from a workshop convened at NSF on May 30-31, 2018 in Alexandria, VA. The overarching objective of the workshop was to rethink the nature and composition of the NSF-supported computational ecosystem given changing application requirements and resources and technology landscapes. The workshop included roughly 50 participants, drawn from high-performance computing (HPC) centers, campus computing facilities, cloud service providers (academic and commercial), and distributed resource providers. Participants spanned both large research institutions and smaller universities. Organized by Daniel Reed (University of Utah, chair), David Lifka (Cornell University), David Swanson (University of Nebraska), Rommie Amaro (UCSD), and Nancy Wilkins-Diehr (UCSD/SDSC), the workshop was motivated by the following observations. First, there have been dramatic changes in the number and nature of applications using NSF-funded resources, as well as their resource needs. As a result, there are new demands on the type (e.g., data centric) and location (e.g., close to the data or the users) of the resources as well as new usage modes (e.g., on-demand and elastic). Second, there have been dramatic changes in the landscape of technologies, resources, and delivery mechanisms, spanning large scientific instruments, ubiquitous sensors, and cloud services, among others. 
    more » « less
  2. Over the past decade, the convergence of Cloud and High-Performance Computing (HPC) has undergone significant movement. We explore the evolution, motivations, and practicalities of establishing on-premise research cloud infrastructure and the complementary nature with HPC and commercial resources; under the belief that research clouds serve a unique role within research and education as a convergence accelerator. This role is highlighted through exploring the design tradeoffs in architecting research clouds versus HPC resources, focusing on the balance between utility, availability, and hardware utilization. The discussion provides insights from experiences with the National Science Foundation-supported Jetstream and Jetstream2 systems, showcasing convergence technologies and challenges. A variety of real-world use cases are provided that show the interplay between these computing paradigms; exploring use in research and education for interactive and iterative development, as an on-ramp to large-scale resources, as a powerful tool for education and workforce development, and for domain specific science gateways. 
    more » « less
  3. Developments in large scale computing environments have led to design of workflows that rely on containers and analytics platform that are well supported by the commercial cloud. The National Science Foundation also envisions a future in science and engineering that includes commercial cloud service providers (CSPs) such as Amazon Web Services, Azure and Google Cloud. These twin forces have made researchers consider the commercial cloud as an alternative option to current high performance computing (HPC) environments. Training and knowledge on how to migrate workflows, cost control, data management, and system administration remain some of the commonly listed concerns with adoption of cloud computing. In an effort to ameliorate this situation, CSPs have developed online and in-person training platforms to help address this problem. Scalability, ability to impart knowledge, evaluating knowledge gain, and accreditation are the core concepts that have driven this approach. Here, we present a review of our experience using Google’s Qwiklabs online platform for remote and in-person training from the perspective of a HPC user. For this study, we completed over 50 online courses, earned five badges and attended a one-day session. We identify the strengths of the approach, identify avenues to refine them, and consider means to further community engagement. We further evaluate the readiness of these resources for a cloud-curious researcher who is familiar with HPC. Finally, we present recommendations on how the large scale computing community can leverage these opportunities to work with CSPs to assist researchers nationally and at their home institutions. 
    more » « less
  4. The goal of a robust cyberinfrastructure (CI) ecosystem is to catalyse discovery and innovation. Tapis does this through offering a sustainable production-quality set of API services to support modern science and engineering research, which increasingly span geographically distributed data centers, instruments, experimental facilities, and a network of national and regional CI. Leveraging frameworks, such as Tapis, enables researchers to accomplish computational and data-intensive research in a secure, scalable, and reproducible way and allows them to focus on their research instead of the technology needed to accomplish it. This project aims to enable the integration of the Google Cloud Platform (GCP) and CloudyCluster resources into Tapis- supported science gateways to provide on-demand scaling needed by computational workflows. The new functionality uses Tapis event-driven Abaco Actors and CloudyCluster to create an elastic distributed cloud computing system on demand. This integration allows researchers and science gateways to augment cloud resources on top of existing local and national computing resources. 
    more » « less
  5. Abstract. Global change research demands a convergence among academic disciplines to understand complex changes in Earth system function. Limitations related to data usability and computing infrastructure, however, present barriers to effective use of the research tools needed for this cross-disciplinary collaboration. To address these barriers, we created a computational platform that pairs meteorological data and site-level ecosystem characterizations from the National Ecological Observatory Network (NEON) with the Community Terrestrial System Model (CTSM) that is developed with university partners at the National Center for Atmospheric Research (NCAR). This NCAR–NEON system features a simplified user interface that facilitates access to and use of NEON observations and NCAR models. We present preliminary results that compare observed NEON fluxes with CTSM simulations and describe how the collaboration between NCAR and NEON that can be used by the global change research community improves both the data and model. Beyond datasets and computing, the NCAR–NEON system includes tutorials and visualization tools that facilitate interaction with observational and model datasets and further enable opportunities for teaching and research. By expanding access to data, models, and computing, cyberinfrastructure tools like the NCAR–NEON system will accelerate integration across ecology and climate science disciplines to advance understanding in Earth system science and global change. 
    more » « less