skip to main content


Title: Microbial predictors of healing and short-term effect of debridement on the microbiome of chronic wounds
Abstract

Chronic wounds represent a large and growing disease burden. Infection and biofilm formation are two of the leading impediments of wound healing, suggesting an important role for the microbiome of these wounds. Debridement is a common and effective treatment for chronic wounds. We analyzed the bacterial content of the wound surface from 20 outpatients with chronic wounds before and immediately after debridement, as well as healthy skin. Given the large variation observed among different wounds, we introduce a Bayesian statistical method that models patient-to-patient variability and identify several genera that were significantly enriched in wounds vs. healthy skin. We found no difference between the microbiome of the original wound surface and that exposed by a single episode of sharp debridement, suggesting that this debridement did not directly alter the wound microbiome. However, we found that aerobes and especially facultative anaerobes were significantly associated with wounds that did not heal within 6 months. The facultative anaerobic genusEnterobacterwas significantly associated with lack of healing. The results suggest that an abundance of facultative anaerobes is a negative prognostic factor in the chronic wound microbiome, possibly due to the increased robustness of such communities to different metabolic environments.

 
more » « less
NSF-PAR ID:
10216568
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Biofilms and Microbiomes
Volume:
6
Issue:
1
ISSN:
2055-5008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Trade‐offs among the key life‐history traits of reproduction and immunity have been widely documented. However, the currency in use is not well‐understood. We investigated how reproducing female side‐blotched lizards,Uta stansburiana, allocate lipids versus proteins when given an immune challenge. We tested whether lizards would invest more in reproduction or immunity depending on reproductive stage. Females were given stable isotopes (15N‐leucine and13C‐1‐palmitic acid), maintained on a regular diet and given either a cutaneous biopsy or a sham biopsy (control). Stable isotopes were monitored and analyzed in feces and uric acid, skin biopsies, eggs, and toe clips. We found that lizards deposited both proteins and lipids into their healing wounds (immune‐challenged), skin (control), and eggs (all) and that catabolism of proteins exceeded incorporation into tissue during wound‐healing. Specifically, we found that healed biopsies of wounded animals had more leucine and palmitic acid than the nonregrown skin biopsies taken from unwounded control animals. Earlier in reproduction, lizards invested relatively more labeled proteins into healing their wound tissue, but not into unwounded skin of control animals. Thus, reproduction is sometimes favored over self‐maintenance, but only in later reproductive stages. Finally, we documented positive relationships among the amount of palmitic acid deposited in the eggs, the amount of food eaten, and the amount of palmitic acid excreted, suggesting higher turnover rates of lipids in lizards investing highly in their eggs.

     
    more » « less
  2. Abstract

    Impaired wound healing is a common complication for diabetic patients and effective diabetic wound management remains a clinical challenge. Furthermore, a significant problem that contributes to patient morbidity is the suboptimal quality of healed skin, which often leads to reoccurring chronic skin wounds. Herein, a novel compound and biomaterial building block, panthenol citrate (PC), is developed. It has interesting fluorescence and absorbance properties, and it is shown that PC can be used in soluble form as a wash solution and as a hydrogel dressing to address impaired wound healing in diabetes. PC exhibits antioxidant, antibacterial, anti‐inflammatory, and pro‐angiogenic properties, and promotes keratinocyte and dermal fibroblast migration and proliferation. When applied in a splinted excisional wound diabetic rodent model, PC improves re‐epithelialization, granulation tissue formation, and neovascularization. It also reduces inflammation and oxidative stress in the wound environment. Most importantly, it improves the regenerated tissue quality with enhanced mechanical strength and electrical properties. Therefore, PC could potentially improve wound care management for diabetic patients and play a beneficial role in other tissue regeneration applications.

     
    more » « less
  3. Cutaneous wounds affect millions of people every year. Vascularization and blood oxygen delivery are critical bottlenecks in wound healing, and understanding the spatiotemporal dynamics of these processes may lead to more effective therapeutic strategies to accelerate wound healing. In this work, we applied multi-parametric photoacoustic microscopy (PAM) to study vascular adaptation and the associated changes in blood oxygen delivery and tissue oxygen metabolism throughout the hemostasis, inflammatory, proliferation, and early remodeling phases of wound healing in mice with skin puncture wounds. Multifaceted changes in the vascular structure, function, and tissue oxygen metabolism were observed during the 14-day monitoring of wound healing. On the entire wound area, significant elevations of the arterial blood flow and tissue oxygen metabolism were observed right after wounding and remained well above the baseline over the 14-day period. On the healing front, biphasic changes in the vascular density and blood flow were observed, both of which peaked on day 1, remained elevated in the first week, and returned to the baselines by day 14. Along with the wound closure and thickening, tissue oxygen metabolism in the healing front remained elevated even after structural and functional changes in the vasculature were stabilized. On the newly formed tissue, significantly higher blood oxygenation, flow, and tissue metabolism were observed compared to those before wounding. Blood oxygenation and flow in the new tissue appeared to be independent of when it was formed, but instead showed noticeable dependence on the phase of wound healing. This PAM study provides new insights into the structural, functional, and metabolic changes associated with vascular adaptation during wound healing and suggests that the timing and target of vascular treatments for wound healing may affect the outcomes.

     
    more » « less
  4. Abstract

    Following injury, skin activates a complex wound healing programme. While cellular and signalling mechanisms of wound repair have been extensively studied, the principles of epidermal‐dermal interactions and their effects on wound healing outcomes are only partially understood. To gain new insight into the effects of epidermal‐dermal interactions, we developed a multiscale, hybrid mathematical model of skin wound healing. The model takes into consideration interactions between epidermis and dermis across the basement membrane via diffusible signals, defined as activator and inhibitor. Simulations revealed that epidermal‐dermal interactions are critical for proper extracellular matrix deposition in the dermis, suggesting these signals may influence how wound scars form. Our model makes several theoretical predictions. First, basal levels of epidermal activator and inhibitor help to maintain dermis in a steady state, whereas their absence results in a raised, scar‐like dermal phenotype. Second, wound‐triggered increase in activator and inhibitor production by basal epidermal cells, coupled with fast re‐epithelialization kinetics, reduces dermal scar size. Third, high‐density fibrin clot leads to a raised, hypertrophic scar phenotype, whereas low‐density fibrin clot leads to a hypotrophic phenotype. Fourth, shallow wounds, compared to deep wounds, result in overall reduced scarring. Taken together, our model predicts the important role of signalling across dermal‐epidermal interface and the effect of fibrin clot density and wound geometry on scar formation. This hybrid modelling approach may be also applicable to other complex tissue systems, enabling the simulation of dynamic processes, otherwise computationally prohibitive with fully discrete models due to a large number of variables.

     
    more » « less
  5. Abstract

    Wound debridement is crucial for proper wound care as it promotes fast and efficient wound healing through removal of necrotic tissue. The latter not only impairs new healthy tissue formation but also increases the odour and the wound exudate, allowing bacteria and other harmful foreign invaders to spread and infect the wound. Hydrogel wound dressings are usually applied for promoting autolytic wound debridement but this is slow and not a very efficient process. On the other hand, enzymatic products for wound debridement are either ointments or gels and they are easily washed out when used for treating highly exuding wounds. This study is an attempt to combine enzymatic debridement functionality with the high swelling ability of polyzwitterionic networks and to produce an innovative dressing with debridement functionality for the healing of highly exuding wounds. For this purpose, two polyzwitterionic hydrogels were synthesized, poly(sulfobetaine methacrylate) and poly(carboxybetaine methacrylate) hydrogels, which were loaded with the protease subtilisin DY for imparting debridement functionality. The swelling ability and mechanical properties of zwitterionic polymer (ZP) hydrogels were shown to depend on their different propensities to physical network formation. Poly(carboxybetaine methacrylate) hydrogels demonstrated better capacity for wound exudate absorption as well as for exerting higher enzymatic debridement activity. Both ZP hydrogels were shown to be non‐cytotoxic which confirms their appropriateness for direct contact with injured tissues. Thus, the newly developed ZP hydrogels demonstrate the potential to be used as new dressing materials with enzymatic debridement functionality for highly exuding wounds. © 2019 The Authors.Polymer Internationalpublished by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

     
    more » « less