skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Southwest Indian Ridge Lower Crust and Moho
Expedition reports: core descriptions, maps, data reports  more » « less
Award ID(s):
1658031
PAR ID:
10216759
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program
Volume:
360
ISSN:
2377-3189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The large demand of mobile devices creates significant concerns about the quality of mobile applications (apps). Developers heavily rely on bug reports in issue tracking systems to reproduce failures (e.g., crashes). However, the process of crash reproduction is often manually done by developers, making the resolution of bugs inefficient, especially given that bug reports are often written in natural language. To improve the productivity of developers in resolving bug reports, in this paper, we introduce a novel approach, called ReCDroid+, that can automatically reproduce crashes from bug reports for Android apps. ReCDroid+ uses a combination of natural language processing (NLP) , deep learning, and dynamic GUI exploration to synthesize event sequences with the goal of reproducing the reported crash. We have evaluated ReCDroid+ on 66 original bug reports from 37 Android apps. The results show that ReCDroid+ successfully reproduced 42 crashes (63.6% success rate) directly from the textual description of the manually reproduced bug reports. A user study involving 12 participants demonstrates that ReCDroid+ can improve the productivity of developers when resolving crash bug reports. 
    more » « less
  2. Registered reports are a new publication workflow where the decision to publish is made prior to data collection and analysis and thus cannot be dependent on the outcome of the study. An increasing number of journals have adopted this new mechanism, but previous research suggests that submission rates are still relatively low. We conducted a census of journals publishing registered reports (N = 278) using independent coders to collect information from submission guidelines, with the goal of documenting journals’ early adoption of registered reports. Our results show that the majority of journals adopting registered reports are in psychology, and it typically takes about a year to publish the first registered report after adopting. Still, many journals have not published their first registered report. There is high variability in impact of journals adopting registered reports. Many journals do not include concrete information about policies that address concerns about registered reports (e.g., exploratory analysis); however, those that do typically allow these practices with some restrictions. Additionally, other open science practices are commonly encouraged or required as part of the registered report process, especially open data and materials. Overall, many journals did not include many of the fields coded by the research team, which could be a barrier to submission for some authors. Though the majority of journals allow authors to be anonymous during the review process, a sizable portion do not, which could also be a barrier to submission. We conclude with future directions and implications for authors of registered reports, journals that have already adopted registered reports, and journals that may consider adopting registered reports in the future. 
    more » « less
  3. Timely, formative feedback is important for instructors and students. In this project, “embedded students” provided instructors with formative feedback through anonymized reports. Students enrolled in preparatory chemistry course sections in fall 2022 self-selected to submit reports documenting their ongoing experiences in learning chemistry content. Embedded students journaled about (i) hours devoted to the course; (ii) topic-specific content mastery, comfort, and confusion; and (iii) instructor pedagogy. An average of 108 reports per week were anonymized and shared with instructors. Instructor effort was limited to agreeing to receive the weekly reports, look them over, and potentially use them to inform upcoming teaching. Embedded students benefited by thinking about their learning in the class (metacognition) and focusing their learning for the upcoming week. Overall, 300 distinct students submitted 1,513 weekly reports, with overall means of 2.81 hours per week of self-reported time devoted to attending lecture, 4.75 hours per week of self-reported time engaged in additional study, and 7.56 hours per week of self-reported total time devoted to the course. Instructors reported reading over 87% of the reports and using feedback to make an average of 4.6 instructional adjustments ranging from working additional practice problems on difficult concepts, providing answer keys to extra problems, implementing problem-solving/review days, and reviewing difficult material or content from earlier in the course. Instructors indicated that the weekly reports contributed to “instructor beneficence”. Students “felt heard” especially when instructors explicitly and constructively addressed comments from the weekly reports. This work is partially supported by the NSF-funded First2 Network. 
    more » « less
  4. The use of crowdsourced data has been finding practical use for enhancing situational awareness during disasters. While recent studies have shown promising results regarding the potential of crowdsourced data (such as user-generated flood reports) for flash flood mapping and situational awareness, little attention has been paid to data imbalance issues that could introduce biases in data and assessment. To address this gap, in this study, we examine biases present in crowdsourced reports to identify data imbalance with a goal of improving disaster situational awareness. Three biases are examined: sample bias, spatial bias, and demographic bias. To examine these biases, we analyzed reported flooding from 3-1-1 reports (which is a citizen hotline allowing the community to report problems such as flooding) and Waze reports (which is a GPS navigation app that allows drivers to report flooded roads) with respect to FEMA damage data collected in the aftermaths of Tropical Storm Imelda in Harris County, Texas, in 2019 and Hurricane Ida in New York City in 2021. First, sample bias is assessed by expanding the flood-related categories in 3-1-1 reports. Integrating other flooding related topics into the Global Moran's I and Local Indicator of Spatial Association (LISA) revealed more communities that were impacted by floods. To examine spatial bias, we perform the LISA and BI-LISA tests on the data sets—FEMA damage, 3-1-1 reports, and Waze reports—at the census tract level and census block group level. By looking at two geographical aggregations, we found that the larger spatial aggregations, census tracts, show less data imbalance in the results. Through a regression analysis, we found that 3-1-1 reports and Waze reports have data imbalance limitations in areas where minority populations and single parent households reside. The findings of this study advance understanding of data imbalance and biases in crowdsourced datasets that are growingly used for disaster situational awareness. Through addressing data imbalance issues, researchers and practitioners can proactively mitigate biases in crowdsourced data and prevent biased and inequitable decisions and actions. 
    more » « less
  5. This paper presents a lightweight process to guide error report authoring. We take the perspective that error reports are really classifiers of program information. They should therefore be subjected to the same measures as other classifiers (e.g., precision and recall). We formalize this perspective as a process for assessing error reports, describe our application of this process to an actual programming language, and present a preliminary study on the utility of the resulting error reports. 
    more » « less