skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A neurotransmitter produced by gut bacteria modulates host sensory behavior.
Animals coexist in commensal, pathogenic or mutualistic relationships with complex communities of diverse organisms, including microorganisms1. Some bacteria produce bioactive neurotransmitters that have previously been proposed to modulate nervous system activity and behaviours of their hosts2,3. However, the mechanistic basis of this microbiota-brain signalling and its physiological relevance are largely unknown. Here we show that in Caenorhabditis elegans, the neuromodulator tyramine produced by commensal Providencia bacteria, which colonize the gut, bypasses the requirement for host tyramine biosynthesis and manipulates a host sensory decision. Bacterially produced tyramine is probably converted to octopamine by the host tyramine β-hydroxylase enzyme. Octopamine, in turn, targets the OCTR-1 octopamine receptor on ASH nociceptive neurons to modulate an aversive olfactory response. We identify the genes that are required for tyramine biosynthesis in Providencia, and show that these genes are necessary for the modulation of host behaviour. We further find that C. elegans colonized by Providencia preferentially select these bacteria in food choice assays, and that this selection bias requires bacterially produced tyramine and host octopamine signalling. Our results demonstrate that a neurotransmitter produced by gut bacteria mimics the functions of the cognate host molecule to override host control of a sensory decision, and thereby promotes fitness of both the host and the microorganism.  more » « less
Award ID(s):
1655118
PAR ID:
10216770
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature
Volume:
583
ISSN:
1476-4687
Page Range / eLocation ID:
415-420
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gilbert, Jack A. (Ed.)
    ABSTRACT Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS—a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome. IMPORTANCE To engage with host cells, diverse pathogenic bacteria produce syringe-like structures called contractile injection systems (CIS). CIS are evolutionarily related to the contractile tails of bacteriophages and are specialized to puncture membranes, often delivering effectors to target cells. Although CIS are key for pathogens to cause disease, paradoxically, similar injection systems have been identified within healthy human microbiome bacteria. Here, we show that gene clusters encoding a predicted CIS, which we term Bacteroidales injection systems (BIS), are present in the microbiomes of nearly all adult humans tested from Western countries. BIS genes are enriched within human gut microbiomes and are expressed both in vitro and in vivo . Further, a greater abundance of BIS genes is present within healthy gut microbiomes than in those humans with with inflammatory bowel disease (IBD). Our discovery provides a potentially distinct means by which our microbiome interacts with the human host or its microbiome. 
    more » « less
  2. Animals selectively acquire specific symbiotic gut bacteria from their environments that aid host fitness. To colonize, a symbiont must locate its niche and sustain growth within the gut. Adhesins are bacterial cell surface proteins that facilitate attachment to host tissues and are often virulence factors for opportunistic pathogens. However, the attachments are often transient and nonspecific, and additional mechanisms are required to sustain infection. In this work, we use live imaging of individual symbiotic bacterial cells colonizing the gut of livingDrosophila melanogasterto show thatLactiplantibacillus plantarumspecifically recognizes the fruit fly foregut as a distinct physical niche.L. plantarumestablishes stably within its niche through host-specific adhesins encoded by genes carried on a colonization island. The adhesin binding domains are conserved throughout the Lactobacillales, and the island also encodes a secretion system widely conserved among commensal and pathogenic bacteria. 
    more » « less
  3. Sangwan, Naseer (Ed.)
    ABSTRACT Bacterially secreted proteins play an important role in microbial physiology and ecology in many environments, including the mammalian gut. While gut microbes have been extensively studied over the past decades, little is known about the proteins that they secrete into the gastrointestinal tract. In this study, we developed and applied a computational pipeline to a comprehensive catalog of human-associated metagenome-assembled genomes in order to predict and analyze the bacterial metasecretome of the human gut, i.e., the collection of proteins secreted out of the cytoplasm by human gut bacteria. We identified the presence of large and diverse families of secreted carbohydrate-active enzymes and assessed their phylogenetic distributions across different taxonomic groups, which revealed an enrichment in Bacteroidetes and Verrucomicrobia . By mapping secreted proteins to available metagenomic data from endoscopic sampling of the human gastrointestinal tract, we specifically pinpointed regions in the upper and lower intestinal tract along the lumen and mucosa where specific glycosidases are secreted by resident microbes. The metasecretome analyzed in this study constitutes the most comprehensive list of secreted proteins produced by human gut bacteria reported to date and serves as a useful resource for the microbiome research community. IMPORTANCE Bacterially secreted proteins are necessary for the proper functioning of bacterial cells and communities. Secreted proteins provide bacterial cells with the ability to harvest resources from the exterior, import these resources into the cell, and signal to other bacteria. In the human gut microbiome, these actions impact host health and allow the maintenance of a healthy gut bacterial community. We utilized computational tools to identify the major components of human gut bacterially secreted proteins and determined their spatial distribution in the gastrointestinal tract. Our analysis of human gut bacterial secreted proteins will allow a better understanding of the impact of gut bacteria on human health and represents a step toward identifying new protein functions with interesting applications in biomedicine and industry. 
    more » « less
  4. Vertebrates host complex microbiomes that impact their physiology. In many taxa, including colourful wood-warblers, gut microbiome similarity decreases with evolutionary distance. This may suggest that as host populations diverge, so do their microbiomes, because of either tight coevolutionary dynamics, or differential environmental influences, or both. Hybridization is common in wood-warblers, but the effects of evolutionary divergence on the microbiome during secondary contact are unclear. Here, we analyse gut microbiomes in two geographically disjunct hybrid zones between blue-winged warblers (Vermivora cyanoptera) and golden-winged warblers (Vermivora chrysoptera). We performed 16S faecal metabarcoding to identify species-specific bacteria and test the hypothesis that host admixture is associated with gut microbiome disruption. Species identity explained a small amount of variation between microbiomes in only one hybrid zone. Co-occurrence of species-specific bacteria was rare for admixed individuals, yet microbiome richness was similar among admixed and parental individuals. Unexpectedly, we found several bacteria that were more abundant among admixed individuals with a broader deposition of carotenoid-based plumage pigments. These bacteria are predicted to encode carotenoid biosynthesis genes, suggesting birds may take advantage of pigments produced by their gut microbiomes. Thus, host admixture may facilitate beneficial symbiotic interactions which contribute to plumage ornaments that function in sexual selection. 
    more » « less
  5. Commensal bacteria influence host physiology, without invading host tissues. We show that proteins from segmented filamentous bacteria (SFB) are transferred into intestinal epithelial cells (IECs) through adhesion-directed endocytosis that is distinct from the clathrin-dependent endocytosis of invasive pathogens. This process transfers microbial cell wall–associated proteins, including an antigen that stimulates mucosal T helper 17 (T H 17) cell differentiation, into the cytosol of IECs in a cell division control protein 42 homolog (CDC42)–dependent manner. Removal of CDC42 activity in vivo led to disruption of endocytosis induced by SFB and decreased epithelial antigen acquisition, with consequent loss of mucosal T H 17 cells. Our findings demonstrate direct communication between a resident gut microbe and the host and show that under physiological conditions, IECs acquire antigens from commensal bacteria for generation of T cell responses to the resident microbiota. 
    more » « less