skip to main content

Title: Driven and Active Colloids at Fluid Interfaces
We derive expressions for the leading-order far-field flows generated by externally driven and active (swimming) colloids at planar fluid–fluid interfaces. We consider colloids adjacent to the interface or adhered to the interface with a pinned contact line. The Reynolds and capillary numbers are assumed much less than unity, in line with typical micron-scale colloids involving air– or alkane–aqueous interfaces. For driven colloids, the leading-order flow is given by the point-force (and/or torque) response of this system. For active colloids, the force-dipole (stresslet) response occurs at leading order. At clean (surfactant-free) interfaces, these hydrodynamic modes are essentially a restricted set of the usual Stokes multipoles in a bulk fluid. To leading order, driven colloids exert Stokeslets parallel to the interface, while active colloids drive differently oriented stresslets depending on the colloid's orientation. We then consider how these modes are altered by the presence of an incompressible interface, a typical circumstance for colloidal systems at small capillary numbers in the presence of surfactant. The leading-order modes for driven and active colloids are restructured dramatically. For driven colloids, interfacial incompressibility substantially weakens the far-field flow normal to the interface; the point-force response drives flow only parallel to the interface. However, Marangoni stresses induce more » a new dipolar mode, which lacks an analogue on a clean interface. Surface-viscous stresses, if present, potentially generate very long-ranged flow on the interface and the surrounding fluids. Our results have important implications for colloid assembly and advective mass transport enhancement near fluid boundaries. « less
Authors:
;
Award ID(s):
1943394
Publication Date:
NSF-PAR ID:
10217486
Journal Name:
Journal of fluid mechanics
Volume:
914
ISSN:
1469-7645
Sponsoring Org:
National Science Foundation
More Like this
  1. Colloids which adsorb to and straddle a fluid interface form monolayers that are paradigms of particle dynamics on a two dimensional fluid landscape. The dynamics is typically inertialess (Stokes flows) and dominated by interfacial tension so the interface is undeformed by the flow, and pairwise drag coefficients can be calculated. Here the hydrodynamic interaction between identical spherical colloids on a planar gas/liquid interface is calculated as a function of separation distance and immersion depth. Drag coefficients (normalized by the coefficient for an isolated particle on the surface) are computed numerically for the four canonical interactions. The first two are motions along the line of centres, either with the particles mutually approaching each other or moving in the same direction (in tandem). The second two are motions perpendicular to the line of centres, either oppositely directed (shear) or in the same direction (tandem). For mutual approach and shear, the normalized coefficients increase with a decrease in separation due to lubrication forces, and become infinite on contact when the particle is more than half immersed. However, they remain bounded at contact when the particles are less than half immersed because they do not contact underneath the liquid. For in-tandem motion, the normalizedmore »coefficients decrease with a decrease in separation; they collapse, for all immersion depths, to the dependence of the drag coefficient on separation for two particles moving in tandem in an infinite medium. The coefficients are used to compute separation against time for colloids driven together by capillary attraction.« less
  2. Liquid crystals (LCs) are fluids within which molecules exhibit long-range orientational order, leading to anisotropic properties such as optical birefringence and curvature elasticity. Because the ordering of molecules within LCs can be altered by weak external stimuli, LCs have been widely used to create soft matter systems that respond optically to electric fields (LC display), temperature (LC thermometer) or molecular adsorbates (LC chemical sensor). More recent studies, however, have moved beyond investigations of optical responses of LCs to explore the design of complex LC-based soft matter systems that offer the potential to realize more sophisticated functions ( e.g. , autonomous, self-regulating chemical responses to mechanical stimuli) by directing the interactions of small molecules, synthetic colloids and living cells dispersed within the bulk of LCs or at their interfaces. These studies are also increasingly focusing on LC systems driven beyond equilibrium states. This review presents one perspective on these advances, with an emphasis on the discovery of fundamental phenomena that may enable new technologies. Three areas of progress are highlighted; (i) directed assembly of amphiphilic molecules either within topological defects of LCs or at aqueous interfaces of LCs, (ii) templated polymerization in LCs via chemical vapor deposition, an approach that overcomesmore »fundamental challenges related to control of LC phase behavior during polymerization, and (iii) studies of colloids in LCs, including chiral colloids, soft colloids that are strained by LCs, and active colloids that are driven into organized states by dissipation of energy ( e.g. bacteria). These examples, and key unresolved issues discussed at the end of this perspective, serve to convey the message that soft matter systems that integrate ideas from LC, surfactant, polymer and colloid sciences define fertile territory for fundamental studies and creation of future transformative technologies.« less
  3. Unknown (Ed.)
    Abstract Hypothesis Surfactant-driven Marangoni spreading generates a fluid flow characterized by an outwardly moving “Marangoni ridge”. Spreading on thin and/or high viscosity subphases, as most of the prior literature emphasizes, does not allow the formation of capillary waves. On deep, low viscosity subphases, Marangoni stresses may launch capillary waves coupled with the Marangoni ridge, and new dependencies emerge for key spreading characteristics on surfactant thermodynamic and kinetic properties. Experiments and modeling Computational and physical experiments were performed using a broad range of surfactants to report the post-deposition motion of the surfactant front and the deformation of the subphase surface. Modeling coupled the Navier-Stokes and advective diffusion equations with an adsorption model. Separate experiments employed tracer particles or an optical density method to track surfactant front motion or surface deformation, respectively. Findings Marangoni stresses on thick subphases induce capillary waves, the slowest of which is co-mingled with the Marangoni ridge. Changing Marangoni stresses by varying the surfactant system alters the surfactant front velocity and the amplitude – but not the velocity – of the slowest capillary wave. As spreading progresses, the surfactant front and its associated surface deformation separate from the slowest moving capillary wave.
  4. The margination and adhesion of micro-particles (MPs) have been extensively investigated separately, due to their important applications in the biomedical field. However, the cascade process from margination to adhesion should play an important role in the transport of MPs in blood flow. To the best of our knowledge, this has not been explored in the past. Here we numerically study the margination behaviour of elastic MPs to blood vessel walls under the interplay of their deformability and adhesion to the vessel wall. We use the lattice Boltzmann method and molecular dynamics to solve the fluid dynamics and particle dynamics (including red blood cells (RBCs) and elastic MPs) in blood flow, respectively. Additionally, a stochastic ligand–receptor binding model is employed to capture the adhesion behaviours of elastic MPs on the vessel wall. Margination probability is used to quantify the localization of elastic MPs at the wall. Two dimensionless numbers are considered to govern the whole process: the capillary number $Ca$ , denoting the ratio of viscous force of fluid flow to elastic interfacial force of MP, and the adhesion number $Ad$ , representing the ratio of adhesion strength to viscous force of fluid flow. We systematically vary them numerically and amore »margination probability contour is obtained. We find that there exist two optimal regimes favouring high margination probability on the plane $Ca{-}Ad$ . The first regime, namely region I, is that with high adhesion strength and moderate particle stiffness; the other one, region II, has moderate adhesion strength and large particle stiffness. We conclude that the existence of optimal regimes is governed by the interplay of particle deformability and adhesion strength. The corresponding underlying mechanism is also discussed in detail. There are three major factors that contribute to the localization of MPs: (i) near-wall hydrodynamic collision between RBCs and MPs; (ii) deformation-induced migration due to the presence of the wall; and (iii) adhesive interaction between MPs and the wall. Mechanisms (i) and (iii) promote margination, while (ii) hampers margination. These three factors perform different roles and compete against each other when MPs are located in different regions of the flow channel, i.e. near-wall region. In optimal region I, adhesion outperforms deformation-induced migration; and in region II, the deformation-induced migration is small compared to the coupling of near-wall hydrodynamic collision and adhesion. The finding of optimal regimes can help the understanding of localization of elastic MPs at the wall under the adhesion effect in blood flow. More importantly, our results suggest that softer MP or stronger adhesion is not always the best choice for the localization of MPs.« less
  5. SUMMARY

    Protracted episodes of 0.5–7 Hz pre-eruptive volcanic tremor (PVT) are common at active stratovolcanoes. Reliable links to processes related to magma movement consequently enable a potential to use properties of PVT as diagnostic eruptive precursors. A challenging feature of PVT is that generic spectral and amplitude properties of the signal evolve similarly, independent of widely varying volcano structures and conduit geometries on which most physical models rely. The ‘magma wagging’ model introduced in Jellinek & Bercovici (2011) and extended by Bercovici et al. (2013), Liao et al. and Liao & Bercovici (2018) makes progress because it depends on magma dynamics that are only weakly sensitive to volcano architecture: The flow of gas through a permeable foamy annulus of gas bubbles excites, modulates and maintains a wagging oscillation of a central magma column rising in an erupting conduit. ‘Magma wagging’ and resulting PVT are driven through an energy transfer from a ‘Bernoulli mode’ related to azimuthal variations in annular gas flow speeds. Consistent with observations, spectral and amplitude properties of PVT are predicted to evolve before an eruption as the width of the annulus decreases with increased gas fluxes. To confirm this critical Bernoulli-to-wagging energy transfer we use extensive experiments and restricted numericalmore »simulations on wagging oscillations excited on analogue viscoelastic columns by annular air flows. We also explore sensitivities of the spatial and temporal characters of wagging to asymmetric annular air flows that are intractable in the existing magma wagging model and expected to occur in nature with spatial variations in annulus permeability. From high-resolution time-series of linear and orbital displacements of analogue column tops and time-series of axial deflections and accelerations of the column centre line, we characterize the excitation, evolution, and steady-state oscillations in unprecedented detail over a broad range of conditions. We show that the Bernoulli mode corresponds to the timescale for the buildup of axial elastic bending stresses in response to pressure variations related to air flows over the heights of columns. We identify three distinct wagging modes: (i) rotational (cf. Liao et al. 2018); (ii) mixed-mode and (iii) chaotic. Rotational modes are favoured for symmetric, high intensity forcing and a maximal delivery of mechanical energy to the fundamental magma wagging mode. Mixed-mode oscillations regimes are favoured for a symmetric, intermediate intensity forcing. Chaotic modes, involving the least efficient delivery of energy to the fundamental mode, occur for asymmetric forcing and where the intensity of imposed airflow is low. Numerical simulations also show that where forcing frequencies are comparable to a natural mode of free oscillation, power delivered by peripheral air flows is concentrated at the lowest frequency fundamental mode generally and spread among higher frequency natural modes where air pressure and column elastic forces are comparable. Our combined experimental and numerical results make qualitative predictions for the evolution of the character of volcanic tremor and its expression in seismic or infrasound arrays during natural events that is testable in field-based studies of PVT and syn-eruptive volcanic tremor.

    « less