Microorganisms encode proteins that function in the transformations of useful and harmful nitrogenous compounds in the global nitrogen cycle. The major transformations in the nitrogen cycle are nitrogen fixation, nitrification, denitrification, anaerobic ammonium oxidation, and ammonification. The focus of this report is the complex biogeochemical process of denitrification, which, in the complete form, consists of a series of four enzyme-catalyzed reduction reactions that transforms nitrate to nitrogen gas. Denitrification is a microbial strain-level ecological trait (characteristic), and denitrification potential (functional performance) can be inferred from trait rules that rely on the presence or absence of genes for denitrifying enzymes in microbial genomes. Despite the global significance of denitrification and associated large-scale genomic and scholarly data sources, there is lack of datasets and interactive computational tools for investigating microbial genomes according to denitrification trait rules. Therefore, our goal is to categorize archaeal and bacterial genomes by denitrification potential based on denitrification traits defined by rules of enzyme involvement in the denitrification reduction steps. We report the integration of datasets on genome, taxonomic lineage, ecosystem, and denitrifying enzymes to provide data investigations context for the denitrification potential of microbial strains. We constructed an ecosystem and taxonomic annotated denitrification potential dataset of 62,624 microbial genomes (866 archaea and 61,758 bacteria) that encode at least one of the twelve denitrifying enzymes in the four-step canonical denitrification pathway. Our four-digit binary-coding scheme categorized the microbial genomes to one of sixteen denitrification traits including complete denitrification traits assigned to 3280 genomes from 260 bacteria genera. The bacterial strains with complete denitrification potential pattern included Arcobacteraceae strains isolated or detected in diverse ecosystems including aquatic, human, plant, and Mollusca (shellfish). The dataset on microbial denitrification potential and associated interactive data investigations tools can serve as research resources for understanding the biochemical, molecular, and physiological aspects of microbial denitrification, among others. The microbial denitrification data resources produced in our research can also be useful for identifying microbial strains for synthetic denitrifying communities.
- Award ID(s):
- 1759906
- NSF-PAR ID:
- 10217789
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 7
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e7467
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Brozel, Volker (Ed.)
-
Sauer, Karin ; Lee, Sang Yup (Ed.)ABSTRACT A type II VapB14 antitoxin regulates biofilm dispersal in the archaeal thermoacidophile Sulfolobus acidocaldarius through traditional toxin neutralization but also through noncanonical transcriptional regulation. Type II VapC toxins are ribonucleases that are neutralized by their proteinaceous cognate type II VapB antitoxin. VapB antitoxins have a flexible tail at their C terminus that covers the toxin’s active site, neutralizing its activity. VapB antitoxins also have a DNA-binding domain at their N terminus that allows them to autorepress not only their own promoters but also distal targets. VapB14 antitoxin gene deletion in S. acidocaldarius stunted biofilm and planktonic growth and increased motility structures (archaella). Conversely, planktonic cells were devoid of archaella in the Δ vapC14 cognate toxin mutant. VapB14 is highly conserved at both the nucleotide and amino acid levels across the Sulfolobales, extremely unusual for type II antitoxins, which are typically acquired through horizontal gene transfer. Furthermore, homologs of VapB14 are found across the Crenarchaeota , in some Euryarchaeota , and even bacteria. S. acidocaldarius vapB14 and its homolog in the thermoacidophile Metallosphaera sedula (Msed_0871) were both upregulated in biofilm cells, supporting the role of the antitoxin in biofilm regulation. In several Sulfolobales species, including M. sedula, homologs of vapB14 and vapC14 are not colocalized. Strikingly, Sulfuracidifex tepidarius has an unpaired VapB14 homolog and lacks a cognate VapC14, illustrating the toxin-independent conservation of the VapB14 antitoxin. The findings here suggest that a stand-alone VapB-type antitoxin was the product of selective evolutionary pressure to influence biofilm formation in these archaea, a vital microbial community behavior. IMPORTANCE Biofilms allow microbes to resist a multitude of stresses and stay proximate to vital nutrients. The mechanisms of entering and leaving a biofilm are highly regulated to ensure microbial survival, but are not yet well described in archaea. Here, a VapBC type II toxin-antitoxin system in the thermoacidophilic archaeon Sulfolobus acidocaldarius was shown to control biofilm dispersal through a multifaceted regulation of the archaeal motility structure, the archaellum. The VapC14 toxin degrades an RNA that causes an increase in archaella and swimming. The VapB14 antitoxin decreases archaella and biofilm dispersal by binding the VapC14 toxin and neutralizing its activity, while also repressing the archaellum genes. VapB14-like antitoxins are highly conserved across the Sulfolobales and respond similarly to biofilm growth. In fact, VapB14-like antitoxins are also found in other archaea, and even in bacteria, indicating an evolutionary pressure to maintain this protein and its role in biofilm formation.more » « less
-
Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one, or some, of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2 and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used for both electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in the dark. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a β-galactosidase reporter we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2-, but not NO3-, activated N2O reduction but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.more » « less
-
Summary Cross‐feeding of metabolites between coexisting cells leads to complex and interconnected elemental cycling and microbial interactions. These relationships influence overall community function and can be altered by changes in substrate availability. Here, we used isotopic rate measurements and metagenomic sequencing to study how cross‐feeding relationships changed in response to stepwise increases of sulfide concentrations in a membrane‐aerated biofilm reactor that was fed with methane and ammonium. Results showed that sulfide: (i) decreased nitrite oxidation rates but increased ammonia oxidation rates; (ii) changed the denitrifying community and increased nitrous oxide production; and (iii) induced dissimilatory nitrite reduction to ammonium (DNRA). We infer that inhibition of nitrite oxidation resulted in higher nitrite availability for DNRA, anammox, and nitrite‐dependent anaerobic methane oxidation. In other words, sulfide likely disrupted microbial cross‐feeding between AOB and NOB and induced cross‐feeding between AOB and nitrite reducing organisms. Furthermore, these cross‐feeding relationships were spatially distributed between biofilm and planktonic phases of the reactor. These results indicate that using sulfide as an electron donor will promote N2O and ammonium production, which is generally not desirable in engineered systems.
-
Elkins, Christopher A. (Ed.)ABSTRACT Enterococcus bacteria inhabit human and soil environments that show a wide range of pH values. Strains include commensals as well as antibiotic-resistant pathogens. We investigated the adaptation to pH stress in E. faecalis OG1RF by conducting experimental evolution under acidic (pH 4.8), neutral pH (pH 7.0), and basic (pH 9.0) conditions. A serial planktonic culture was performed for 500 generations and in a high-pH biofilm culture for 4 serial bead transfers. Nearly all of the mutations led to nonsynonomous codons, indicating adaptive selection. All of the acid-adapted clones from the planktonic culture showed a mutation in fusA (encoding elongation factor G). The acid-adapted fusA mutants had a trade-off of decreased resistance to fusidic acid (fusidate). All of the base-adapted clones from the planktonic cultures as well as some from the biofilm-adapted cultures showed mutations that affected the Pst phosphate ABC transporter ( pstA , pstB , pstB2 , pstC ) and pyrR (pyrimidine biosynthesis regulator/uracil phosphoribosyltransferase). The biofilm cultures produced small-size colonies on brain heart infusion agar. These variants each contained a single mutation in pstB2 , pstC , or pyrR . The pst and pyrR mutants outgrew the ancestral strain at pH 9.2, with a trade-off of lower growth at pH 4.8. Additional genes that had a mutation in multiple clones that evolved at high pH (but not at low pH) include opp1BCDF (oligopeptide ABC transporter), ccpA (catabolite control protein A), and ftsZ (septation protein). Overall, the experimental evolution of E. faecalis showed a strong pH dependence, favoring the fusidate-sensitive elongation factor G modification at low pH and the loss of phosphate transport genes at high pH. IMPORTANCE E. faecalis bacteria are found in dental biofilms, where they experience low pH as a result of fermentative metabolism. Thus, the effect of pH on antibiotic resistance has clinical importance. The loss of fusidate resistance is notable for OG1RF strains in which fusidate resistance is assumed to be a stable genetic marker. In endodontal infections, enterococci can resist calcium hydroxide therapy that generates extremely high pH values. In other environments, such as the soil and plant rhizosphere, enterococci experience acidification that is associated with climate change. Thus, the pH modulation of natural selection in enterococci is important for human health as well as for understanding soil environments.more » « less