Interfaces of glassy materials such as thin films, blends, and composites create strong unidirectional gradients to the local heterogeneous dynamics that can be used to elucidate the length scales and mechanisms associated with the dynamic heterogeneity of glasses. We focus on bilayer films of two different polymers with very different glass transition temperatures ( ) where previous work has demonstrated a long-range (∼200 nm) profile in local is established between immiscible glassy and rubbery polymer domains when the polymer–polymer interface is formed to equilibrium. Here, we demonstrate that an equally long-ranged gradient in local modulus is established when the polymer–polymer interface ( 5 nm) is formed between domains of glassy polystyrene (PS) and rubbery poly(butadiene) (PB), consistent with previous reports of a broad profile in this system. A continuum physics model for the shear wave propagation caused by a quartz crystal microbalance across a PB/PS bilayer film is used to measure the viscoelastic properties of the bilayer during the evolution of the PB/PS interface showing the development of a broad gradient in local modulus spanning 180 nm between the glassy and rubbery domains of PS and PB. We suggest these broad profiles in and arise from a coupling of the spectrum of vibrational modes across the polymer–polymer interface as a result of acoustic impedance matching of sound waves with nm during interface broadening that can then trigger density fluctuations in the neighboring domain.
more »
« less
Mono- and bilayer smectic liquid crystal ordering in dense solutions of “gapped” DNA duplexes
Although its mesomorphic properties have been studied for many years, only recently has the molecule of life begun to reveal the true range of its rich liquid crystalline behavior. End-to-end interactions between concentrated, ultrashort DNA duplexes—driving the self-assembly of aggregates that organize into liquid crystal phases—and the incorporation of flexible single-stranded “gaps” in otherwise fully paired duplexes—producing clear evidence of an elementary lamellar (smectic-A) phase in DNA solutions—are two exciting developments that have opened avenues for discovery. Here, we report on a wider investigation of the nature and temperature dependence of smectic ordering in concentrated solutions of various “gapped” DNA (GDNA) constructs. We examine symmetric GDNA constructs consisting of two 48-base pair duplex segments bridged by a single-stranded sequence of 2 to 20 thymine bases. Two distinct smectic layer structures are observed for DNA concentration in the range mg/mL. One exhibits an interlayer periodicity comparable with two-duplex lengths (“bilayer” structure), and the other has a period similar to a single-duplex length (“monolayer” structure). The bilayer structure is observed for gap length ≳10 bases and melts into the cholesteric phase at a temperature between 30 °C and 35 °C. The monolayer structure predominates for gap length ≲10 bases and persists to C. We discuss models for the two layer structures and mechanisms for their stability. We also report results for asymmetric gapped constructs and for constructs with terminal overhangs, which further support the model layer structures.
more »
« less
- Award ID(s):
- 2005212
- PAR ID:
- 10217803
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 12
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2019996118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A test of lepton flavor universality in and decays, as well as a measurement of differential and integrated branching fractions of a nonresonant decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions to is determined from the measured double ratio of these decays to the respective branching fractions of the with and decays, which allow for significant cancellation of systematic uncertainties. The ratio is measured in the range , whereqis the invariant mass of the lepton pair, and is found to be , in agreement with the standard model expectation . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, , is consistent with the present world-average value and has a comparable precision.more » « less
-
Abstract Surface properties are critical to the capabilities of superconducting microwave devices. The native oxide of niobium-based devices is thought to consist of a thin normal conducting layer. To improve understanding on the importance of this layer, an attempt was made to replace it with a more easily controlled gold film. A niobium sample host microwave cavity was used to measure the surface resistance in continuous wave operation at and . Sample conditions studied include temperatures ranging from to with RF magnetic fields on the sample surface ranging from to the maximum field before the superconducting properties were lost (quench field). The nominal film thickness of the gold layer was increased from to in five steps to study the impact of the normal layer thickness on surface resistance on a single niobium substrate. The film was found to reduce the surface resistance of the sample and to enhance the quench field. With the exception of the final step from a gold film to , the magnitude of the surface resistance increased substantially with gold film thickness. The nature of the surface resistance field-dependence appeared to be roughly independent from the gold layer thickness. This initial study provides new perspectives and suggests avenues for optimizing and designing surfaces for resonant cavities in particle accelerators and quantum information applications.more » « less
-
Abstract A search for resonances in top quark pair ( ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at , corresponding to 138 fb−1. The analysis explores the invariant mass of the system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for toponium, the cross section of the excess above the pQCD prediction is measured to be .more » « less
-
Abstract The production of a pair of τ leptons via photon–photon fusion, , is observed for the first time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of is . Constraints are set on the contributions to the anomalous magnetic moment ( ) and electric dipole moments ( ) of the τ lepton originating from potential effects of new physics on the vertex: and (95% confidence level), consistent with the standard model.more » « less
An official website of the United States government
