skip to main content


Title: Contrasting drivers of diversity in hosts and parasites across the tropical Andes

Geographic turnover in community composition is created and maintained by eco-evolutionary forces that limit the ranges of species. One such force may be antagonistic interactions among hosts and parasites, but its general importance is unknown. Understanding the processes that underpin turnover requires distinguishing the contributions of key abiotic and biotic drivers over a range of spatial and temporal scales. Here, we address these challenges using flexible, nonlinear models to identify the factors that underlie richness (alpha diversity) and turnover (beta diversity) patterns of interacting host and parasite communities in a global biodiversity hot spot. We sampled 18 communities in the Peruvian Andes, encompassing ∼1,350 bird species and ∼400 hemosporidian parasite lineages, and spanning broad ranges of elevation, climate, primary productivity, and species richness. Turnover in both parasite and host communities was most strongly predicted by variation in precipitation, but secondary predictors differed between parasites and hosts, and between contemporary and phylogenetic timescales. Host communities shaped parasite diversity patterns, but there was little evidence for reciprocal effects. The results for parasite communities contradicted the prevailing view that biotic interactions filter communities at local scales while environmental filtering and dispersal barriers shape regional communities. Rather, subtle differences in precipitation had strong, fine-scale effects on parasite turnover while host–community effects only manifested at broad scales. We used these models to map bird and parasite turnover onto the ecological gradients of the Andean landscape, illustrating beta-diversity hot spots and their mechanistic underpinnings.

 
more » « less
NSF-PAR ID:
10217805
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
12
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2010714118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Community composition is driven by a few key assembly processes: ecological selection, drift and dispersal. Nested parasite communities represent a powerful study system for understanding the relative importance of these processes and their relationship with biological scale. Quantifying β‐diversity across scales and over time additionally offers mechanistic insights into the ecological processes shaping the distributions of parasites and therefore infectious disease. To examine factors driving parasite community composition, we quantified the parasite communities of 959 amphibian hosts representing two species (the Pacific chorus frog, Pseudacris regilla and the California newt, Taricha torosa) sampled over 3 months from 10 ponds in California. Using additive partitioning, we estimated how much of regional parasite richness (γ‐diversity) was composed of within‐host parasite richness (α‐diversity) and turnover (β‐diversity) at three biological scales: across host individuals, across species and across habitat patches (ponds). We also examined how β‐diversity varied across time at each biological scale. Differences among ponds comprised the majority (40%) of regional parasite diversity, followed by differences among host species (23%) and among host individuals (12%). Host species supported parasite communities that were less similar than expected by null models, consistent with ecological selection, although these differences lessened through time, likely due to high dispersal rates of infectious stages. Host individuals within the same population supported more similar parasite communities than expected, suggesting that host heterogeneity did not strongly impact parasite community composition and that dispersal was high at the individual host-level. Despite the small population sizes of within‐host parasite communities, drift appeared to play a minimal role in structuring community composition. Dispersal and ecological selection appear to jointly drive parasite community assembly, particularly at larger biological scales. The dispersal ability of aquatic parasites with complex life cycles differs strongly across scales, meaning that parasite communities may predictably converge at small scales where dispersal is high, but may be more stochastic and unpredictable at larger scales. Insights into assembly mechanisms within multi‐host, multi‐parasite systems provide opportunities for understanding how to mitigate the spread of infectious diseases within human and wildlife hosts. 
    more » « less
  2. Abstract

    Community composition is driven by a few key assembly processes: ecological selection, drift and dispersal. Nested parasite communities represent a powerful study system for understanding the relative importance of these processes and their relationship with biological scale. Quantifyingβ‐diversity across scales and over time additionally offers mechanistic insights into the ecological processes shaping the distributions of parasites and therefore infectious disease.

    To examine factors driving parasite community composition, we quantified the parasite communities of 959 amphibian hosts representing two species (the Pacific chorus frog,Pseudacris regillaand the California newt,Taricha torosa) sampled over 3 months from 10 ponds in California. Using additive partitioning, we estimated how much of regional parasite richness (γ‐diversity) was composed of within‐host parasite richness (α‐diversity) and turnover (β‐diversity) at three biological scales: across host individuals, across species and across habitat patches (ponds). We also examined howβ‐diversity varied across time at each biological scale.

    Differences among ponds comprised the majority (40%) of regional parasite diversity, followed by differences among host species (23%) and among host individuals (12%). Host species supported parasite communities that were less similar than expected by null models, consistent with ecological selection, although these differences lessened through time, likely due to high dispersal rates of infectious stages. Host individuals within the same population supported more similar parasite communities than expected, suggesting that host heterogeneity did not strongly impact parasite community composition and that dispersal was high at the individual host-level. Despite the small population sizes of within‐host parasite communities, drift appeared to play a minimal role in structuring community composition.

    Dispersal and ecological selection appear to jointly drive parasite community assembly, particularly at larger biological scales. The dispersal ability of aquatic parasites with complex life cycles differs strongly across scales, meaning that parasite communities may predictably converge at small scales where dispersal is high, but may be more stochastic and unpredictable at larger scales. Insights into assembly mechanisms within multi‐host, multi‐parasite systems provide opportunities for understanding how to mitigate the spread of infectious diseases within human and wildlife hosts.

     
    more » « less
  3. Abstract Aim

    Macroecological analyses provide valuable insights into factors that influence how parasites are distributed across space and among hosts. Amid large uncertainties that arise when generalizing from local and regional findings, hierarchical approaches applied to global datasets are required to determine whether drivers of parasite infection patterns vary across scales. We assessed global patterns of haemosporidian infections across a broad diversity of avian host clades and zoogeographical realms to depict hotspots of prevalence and to identify possible underlying drivers.

    Location

    Global.

    Time period

    1994–2019.

    Major taxa studied

    Avian haemosporidian parasites (generaPlasmodium,Haemoproteus,LeucocytozoonandParahaemoproteus).

    Methods

    We amalgamated infection data from 53,669 individual birds representing 2,445 species world‐wide. Spatio‐phylogenetic hierarchical Bayesian models were built to disentangle potential landscape, climatic and biotic drivers of infection probability while accounting for spatial context and avian host phylogenetic relationships.

    Results

    Idiosyncratic responses of the three most common haemosporidian genera to climate, habitat, host relatedness and host ecological traits indicated marked variation in host infection rates from local to global scales. Notably, host ecological drivers, such as migration distance forPlasmodiumandParahaemoproteus, exhibited predominantly varying or even opposite effects on infection rates across regions, whereas climatic effects on infection rates were more consistent across realms. Moreover, infections in some low‐prevalence realms were disproportionately concentrated in a few local hotspots, suggesting that regional‐scale variation in habitat and microclimate might influence transmission, in addition to global drivers.

    Main conclusions

    Our hierarchical global analysis supports regional‐scale findings showing the synergistic effects of landscape, climate and host ecological traits on parasite transmission for a cosmopolitan and diverse group of avian parasites. Our results underscore the need to account for such interactions, in addition to possible variation in drivers across regions, to produce the robust inference required to predict changes in infection risk under future scenarios.

     
    more » « less
  4. Abstract Aim

    We evaluated the influence of climate on the structure of bird communities along precipitation gradients. We hypothesize that mechanisms responsible for community turnover along precipitation gradients are similar to mechanisms operating along temperature and latitudinal gradients. We tested the hypothesis that environmental conditions affect community composition in dry forests, whereas biotic interactions affect community composition in wet forests.

    Location

    Low‐elevation forests along a precipitation gradient in Colombia where precipitation ranges from 700–4,000 mm annually but elevation and temperature remain constant.

    Time period

    Present day.

    Major taxa studied

    Neotropical forest birds.

    Methods

    We sampled at 291 points in nine study areas (localities) across thec. 3,000‐mm precipitation range. In each locality, we obtained climatic characteristics and phylogenetic, morphological and physiological proxy data to test predictions about the evolutionary relationships and distribution of traits.

    Results

    Bird communities changed abruptly along the precipitation gradient and differed between dry and wet forests. Analyses of phylogenetic relationships, trait space, and observations at nests suggested that environmental filtering is more important in dry than in wet forests, especially for breeding. In contrast, we found little evidence that competition was more important in wet than in dry forests. Nest predation or competition for nest space, however, may be more critical in wetter forests.

    Conclusions

    The two distinct bird communities we documented suggest that lowland precipitation gradients, across which temperature is constant, can be as important as temperature gradients in generating high beta diversity. We conclude that breeding in bird communities might be crucial for determining community assembly along environmental gradients. Given that recent population declines in tropical birds have been attributed to changes in precipitation, by understanding the mechanisms underlying community assembly along precipitation gradients our study may improve our ability to understand those declines and predict the effects of climate change on Neotropical avifauna.

     
    more » « less
  5. Mistletoes are branch parasites of trees and shrubs, and keystone species found world-wide that have diverse biotic interactions with seed dispersers, pollinators, and animals that use mistletoes for shelter. They also restructure ecological communities, increasing productivity and biotic diversity. Given their important roles within their communities, a better understanding of their correlations with contemporary and predicted future climates will facilitate our understanding of the challenging aerial landscapes they inhabit. Currently mistletoe occurrence is largely attributed to host preference and availability, even though most mistletoes have many host trees and generally host tree ranges are greater than those of their mistletoes. Using Australian occurrence records and climate data with statistical analyses and modeling, we investigated correlations between climatic variables and mistletoe species distribution, richness, and predicted contemporary and future habitat suitability. Distributions of Australian mistletoe revealed differences among haustorial type and in some cases also genera and showed that ancestral haustorial types were associated with mesic ancestral habitats while derived types were generally associated with drier habitats that are considered derived within Australia. We found significant correlations with a suite of climatic variables, especially but not exclusively precipitation and temperature variables. We conclude that mistletoe distributional patterns, especially when haustorium type is considered, are correlated with climate, similar to other angiosperms. Mistletoes are vulnerable to the warmer, drier climates predicted for Australia and are expected to lose suitable habitat, primarily in interior arid regions of Australia. Ranges of species currently in northeastern tropical and subtropical regions will contract further north while those in semi-arid and arid regions are predicted to mostly shift south and southwest into temperate, montane, and Mediterranean habitat types. 
    more » « less