Geographic turnover in community composition is created and maintained by eco-evolutionary forces that limit the ranges of species. One such force may be antagonistic interactions among hosts and parasites, but its general importance is unknown. Understanding the processes that underpin turnover requires distinguishing the contributions of key abiotic and biotic drivers over a range of spatial and temporal scales. Here, we address these challenges using flexible, nonlinear models to identify the factors that underlie richness (alpha diversity) and turnover (beta diversity) patterns of interacting host and parasite communities in a global biodiversity hot spot. We sampled 18 communities in the Peruvian Andes, encompassing ∼1,350 bird species and ∼400 hemosporidian parasite lineages, and spanning broad ranges of elevation, climate, primary productivity, and species richness. Turnover in both parasite and host communities was most strongly predicted by variation in precipitation, but secondary predictors differed between parasites and hosts, and between contemporary and phylogenetic timescales. Host communities shaped parasite diversity patterns, but there was little evidence for reciprocal effects. The results for parasite communities contradicted the prevailing view that biotic interactions filter communities at local scales while environmental filtering and dispersal barriers shape regional communities. Rather, subtle differences in precipitation had strong, fine-scale effects on parasite turnover while host–community effects only manifested at broad scales. We used these models to map bird and parasite turnover onto the ecological gradients of the Andean landscape, illustrating beta-diversity hot spots and their mechanistic underpinnings.
more » « less- NSF-PAR ID:
- 10217805
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 12
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2010714118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Community composition is driven by a few key assembly processes: ecological selection, drift and dispersal. Nested parasite communities represent a powerful study system for understanding the relative importance of these processes and their relationship with biological scale. Quantifying β‐diversity across scales and over time additionally offers mechanistic insights into the ecological processes shaping the distributions of parasites and therefore infectious disease. To examine factors driving parasite community composition, we quantified the parasite communities of 959 amphibian hosts representing two species (the Pacific chorus frog, Pseudacris regilla and the California newt, Taricha torosa) sampled over 3 months from 10 ponds in California. Using additive partitioning, we estimated how much of regional parasite richness (γ‐diversity) was composed of within‐host parasite richness (α‐diversity) and turnover (β‐diversity) at three biological scales: across host individuals, across species and across habitat patches (ponds). We also examined how β‐diversity varied across time at each biological scale. Differences among ponds comprised the majority (40%) of regional parasite diversity, followed by differences among host species (23%) and among host individuals (12%). Host species supported parasite communities that were less similar than expected by null models, consistent with ecological selection, although these differences lessened through time, likely due to high dispersal rates of infectious stages. Host individuals within the same population supported more similar parasite communities than expected, suggesting that host heterogeneity did not strongly impact parasite community composition and that dispersal was high at the individual host-level. Despite the small population sizes of within‐host parasite communities, drift appeared to play a minimal role in structuring community composition. Dispersal and ecological selection appear to jointly drive parasite community assembly, particularly at larger biological scales. The dispersal ability of aquatic parasites with complex life cycles differs strongly across scales, meaning that parasite communities may predictably converge at small scales where dispersal is high, but may be more stochastic and unpredictable at larger scales. Insights into assembly mechanisms within multi‐host, multi‐parasite systems provide opportunities for understanding how to mitigate the spread of infectious diseases within human and wildlife hosts.more » « less
-
Abstract Community composition is driven by a few key assembly processes: ecological selection, drift and dispersal. Nested parasite communities represent a powerful study system for understanding the relative importance of these processes and their relationship with biological scale. Quantifying
β ‐diversity across scales and over time additionally offers mechanistic insights into the ecological processes shaping the distributions of parasites and therefore infectious disease.To examine factors driving parasite community composition, we quantified the parasite communities of 959 amphibian hosts representing two species (the Pacific chorus frog,
Pseudacris regilla and the California newt,Taricha torosa ) sampled over 3 months from 10 ponds in California. Using additive partitioning, we estimated how much of regional parasite richness (γ ‐diversity) was composed of within‐host parasite richness (α ‐diversity) and turnover (β ‐diversity) at three biological scales: across host individuals, across species and across habitat patches (ponds). We also examined howβ ‐diversity varied across time at each biological scale.Differences among ponds comprised the majority (40%) of regional parasite diversity, followed by differences among host species (23%) and among host individuals (12%). Host species supported parasite communities that were less similar than expected by null models, consistent with ecological selection, although these differences lessened through time, likely due to high dispersal rates of infectious stages. Host individuals within the same population supported more similar parasite communities than expected, suggesting that host heterogeneity did not strongly impact parasite community composition and that dispersal was high at the individual host-level. Despite the small population sizes of within‐host parasite communities, drift appeared to play a minimal role in structuring community composition.
Dispersal and ecological selection appear to jointly drive parasite community assembly, particularly at larger biological scales. The dispersal ability of aquatic parasites with complex life cycles differs strongly across scales, meaning that parasite communities may predictably converge at small scales where dispersal is high, but may be more stochastic and unpredictable at larger scales. Insights into assembly mechanisms within multi‐host, multi‐parasite systems provide opportunities for understanding how to mitigate the spread of infectious diseases within human and wildlife hosts.
-
Abstract Host movements, including migrations or range expansions, are known to influence parasite communities. Transitions to captivity—a rarely studied yet widespread human‐driven host movement—can also change parasite communities, in some cases leading to pathogen spillover among wildlife species, or between wildlife and human hosts. We compared parasite species richness between wild and captive populations of 22 primate species, including macro‐ (helminths and arthropods) and micro‐parasites (viruses, protozoa, bacteria, and fungi). We predicted that captive primates would have only a subset of their native parasite community, and would possess fewer parasites with complex life cycles requiring intermediate hosts or vectors. We further predicted that captive primates would have parasites transmitted by close contact and environmentally—including those shared with humans and other animals, such as commensals and pests. We found that the composition of primate parasite communities shifted in captive populations, especially because of turnover (parasites detected in captivity but not reported in the wild), but with some evidence of nestedness (holdovers from the wild). Because of the high degree of turnover, we found no significant difference in overall parasite richness between captive and wild primates. Vector‐borne parasites were less likely to be found in captivity, whereas parasites transmitted through either close or non‐close contact, including through fecal‐oral transmission, were more likely to be newly detected in captivity. These findings identify parasites that require monitoring in captivity and raise concerns about the introduction of novel parasites to potentially susceptible wildlife populations during reintroduction programs.
-
Abstract Host and parasite richness are generally positively correlated, but the stability of this relationship in response to global change remains poorly understood. Rapidly changing biotic and abiotic conditions can alter host community assembly, which in turn, can alter parasite transmission. Consequently, if the relationship between host and parasite richness is sensitive to parasite transmission, then changes in host composition under various global change scenarios could strengthen or weaken the relationship between host and parasite richness. To test the hypothesis that host community assembly can alter the relationship between host and parasite richness in response to global change, we experimentally crossed host diversity (biodiversity loss) and resource supply to hosts (eutrophication), then allowed communities to assemble. As previously shown, initial host diversity and resource supply determined the trajectory of host community assembly, altering post‐assembly host species richness, richness‐independent host phylogenetic diversity, and colonization by exotic host species. Overall, host richness predicted parasite richness, and as predicted, this effect was moderated by exotic abundance—communities dominated by exotic species exhibited a stronger positive relationship between post‐assembly host and parasite richness. Ultimately, these results suggest that, by modulating parasite transmission, community assembly can modify the relationship between host and parasite richness. These results thus provide a novel mechanism to explain how global environmental change can generate contingencies in a fundamental ecological relationship—the positive relationship between host and parasite richness.
-
Abstract Hosts and parasites are embedded in communities where species richness and composition can influence disease outcomes (diversity–disease relationships). The direction and magnitude of diversity–disease relationships are influenced by variation in competence (ability to support and transmit infections) of hosts in a community. However, host susceptibility to parasites, which mediates host competence, is not static and is influenced by environmental factors, including pollutants. Despite the role that pollutants can play in augmenting host susceptibility, how pollutants influence diversity–disease dynamics is not well understood.
Using an amphibian–trematode model, we tested how NaCl influences diversity–disease dynamics. We predicted that NaCl exposure can alter relative susceptibility of host species to trematodes, leading to cascading effects on the diversity–disease relationship. To test these predictions, we exposed hosts to benign or NaCl environments and generated communities that differed in number and composition of host species. We exposed these communities to trematodes and measured disease outcomes at the community (total infections across all hosts within a community) and species levels (average number of infections per host species within a community).
Host species differed in their relative susceptibility to trematodes when exposed to NaCl. Consequently, at the community level (total infections across all hosts within a community), we only detected diversity–disease relationships (dilution effects) in communities where hosts were exposed to NaCl. At the species level, disease outcomes (average number of infections/species) and whether multi‐species communities supported lower number of infections relative to single‐species communities depended on community composition. Notably, however, as with overall community infection, diversity–disease relationships only emerged when hosts were exposed to NaCl.
Synthesis. Pollutants are ubiquitous in nature and can influence disease dynamics across a number of host–parasite systems. Here, we show that NaCl exposure can alter the relative susceptibility of host species to parasites, influencing the relationship between biodiversity and disease at both community and species levels. Collectively, our study contributes to the limited knowledge surrounding environmental mediators of host susceptibility and their influence on diversity–disease dynamics.