skip to main content


Title: Patterns of speciation are similar across mountainous and lowland regions for a Neotropical plant radiation (Costaceae: Costus)
High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species‐rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain‐influenced and lowland Amazonian sister pairs inferred from a 756‐gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 million years with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors do not differ between mountain‐influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.  more » « less
Award ID(s):
1737889 1737848
NSF-PAR ID:
10217900
Author(s) / Creator(s):
; ; ;
Editor(s):
Emerson, B.
Date Published:
Journal Name:
Evolution
Volume:
74
Issue:
12
ISSN:
1558-5646
Page Range / eLocation ID:
2644-2661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Neotropics harbors a megadiverse ichthyofauna comprising over 6300 species with approximately 80% in just three taxonomic orders within the clade Characiphysi. This highly diverse group has evolved in tropical South America over tens to hundreds of millions of years influenced mostly by re‐arrangements of river drainages in lowland and upland systems. In this study, we investigate patterns of spatial diversification in Neotropical freshwater fishes in the family Curimatidae, a species‐rich clade of the order Characiformes. Specifically, we examined ancestral areas, dispersal events, and shifts in species richness using spatially explicit biogeographic and macroevolutionary models to determine whether lowlands–uplands serve as museums or cradles of diversification for curimatids. We used fossil information to estimate divergence times in BEAST, multiple time‐stratified models of geographic range evolution in BioGeoBEARS, and alternative models of geographic state‐dependent speciation and extinction in GeoHiSSE. Our results suggest that the most recent common ancestor of curimatids originated in the Late Cretaceous likely in lowland paleodrainages of northwestern South America. Dispersals from lowland to upland river basins of the Brazilian and Guiana shields occurred repeatedly across independently evolving lineages in the Cenozoic. Colonization of upland drainages was often coupled with increased rates of net diversification in species‐rich genera such asCyphocharaxandSteindachnerina. Our findings demonstrate that colonization of novel aquatic environments at higher elevations is associated with an increased rate of diversification, although this pattern is clade‐dependent and driven mostly by allopatric speciation. Curimatids reinforce an emerging perspective that Amazonian lowlands act as a museum by accumulating species along time, whereas the transitions to uplands stimulate higher net diversification rates and lineage diversification.

     
    more » « less
  2. Abstract

    Many arctic‐alpine plant genera have undergone speciation during the Quaternary. The bases for these radiations have been ascribed to geographic isolation, abiotic and biotic differences between populations, and/or hybridization and polyploidization. The CordilleranCampanulaL. (Campanulaceae Juss.), a monophyletic clade of mostly endemic arctic‐alpine taxa from western North America, experienced a recent and rapid radiation. We set out to unravel the factors that likely influenced speciation in this group. To do so, we integrated environmental, genetic, and morphological datasets, tested biogeographic hypotheses, and analyzed the potential consequences of the various factors on the evolutionary history of the clade. We created paleodistribution models to identify potential Pleistocene refugia for the clade and estimated niche space for individual taxa using geographic and climatic data. Using 11 nuclear loci, we reconstructed a species tree and tested biogeographic hypotheses derived from the paleodistribution models. Finally, we tested 28 morphological characters, including floral, vegetative, and seed characteristics, for their capacity to differentiate taxa. Our results show that the combined effect of Quaternary climatic variation, isolation among differing environments in the mountains in western North America, and biotic factors influencing floral morphology contributed to speciation in this group during the mid‐Pleistocene. Furthermore, our biogeographic analyses uncovered asynchronous consequences of interglacial and glacial periods for the timing of refugial isolation within the southern and northwestern mountains, respectively. These findings have broad implications for understanding the processes promoting speciation in arctic‐alpine plants and the rise of numerous endemic taxa across the region.

     
    more » « less
  3. Abstract

    The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.

     
    more » « less
  4. Abstract

    A primary challenge for modern phylogeography is understanding how ecology and geography, both contemporary and historical, shape the spatial distribution and evolutionary histories of species. Phylogeographic patterns are the result of many factors, including geology, climate, habitat, colonization history and lineage‐specific constraints. Assessing the relative influences of these factors is difficult because few species, regions and environments are sampled in enough detail to compare competing hypotheses rigorously and because a particular phylogeographic pattern can potentially result from different evolutionary scenarios. The silky anoles (Anolis sericeuscomplex) of Central America and Mexico are abundant and found in all types of lowland terrestrial habitat, offering an excellent opportunity to test the relative influences of the factors affecting diversification. Here, we performed a range‐wide statistical phylogeographic analysis on restriction site‐associated DNA (RAD) markers from silky anoles and compared the phylogeographic patterns we recovered to historical and contemporary environmental and topographic data. We constructed niche models to compare niche overlap between sister lineages and conducted coalescent simulations to characterize how the major lineages of silky anoles have diverged. Our results revealed that the mode of divergence for major lineage diversification events was geographic isolation, resulting in ecological divergence between lineages, followed by secondary contact. Moreover, comparisons of parapatric sister lineages suggest that ecological niche divergence contributed to isolation by environment in this system, reflecting the natural history differences among populations in divergent environments.

     
    more » « less
  5. Abstract Aim

    While the floras of eastern Asia (EA) and eastern North America (ENA) share numerous genera, they have drastically different species richness. Despite an overall similarity in the quality of their temperate climates, the climate of EA is more spatially heterogeneous than that of ENA. Spatial environmental heterogeneity has been found to play a key role in influencing species richness in some regions. Here, we tested the following hypotheses: (a) EA species will occupy larger climatic niches than their ENA congeners, (b) congeners of EA‐ENA disjunct genera will occupy statistically equivalent climatic niches, and (c) congeners of EA‐ENA disjunct genera will occupy more similar climatic niches than expected by their respective physiographic context.

    Location

    North America and Asia.

    Time period

    Present.

    Major taxa studied

    Seed plants.

    Methods

    Predictions generated by ecological niche models (ENMs) were compared for 88 species across 31 EA‐ENA disjunct genera. ENM predictions were assessed for geographic and ecological breadth. Tests for niche equivalency and similarity were performed for congeneric species pairs to determine if species of disjunct genera have experienced niche conservatism or divergence.

    Results

    EA species tend to occupy greater amounts of climatic niche space than their close relatives in ENA. Over two‐thirds of the conducted niche comparisons show that EA‐ENA congeners either occupy equivalent climatic niche space within these broader climatic regimes or occupy non‐equivalent niches that are as similar as expected given their physiographic contexts.

    Main conclusions

    EA species tend to occupy larger climatic niches, and congeners of EA‐ENA disjunct genera tend to occupy equivalent/similar niche space within their respective distributions, with differences in occupied niches possibly due to their respective physiographic contexts, highlighting how niche‐neutral processes and niche conservatism may affect the distributions of disjunct species.

     
    more » « less