High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species-rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain-influenced and lowland Amazonian sister pairs inferred from a 756-gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 My with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors don’t differ between mountain-influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.
more »
« less
Patterns of speciation are similar across mountainous and lowland regions for a Neotropical plant radiation (Costaceae: Costus)
High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species‐rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain‐influenced and lowland Amazonian sister pairs inferred from a 756‐gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 million years with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors do not differ between mountain‐influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.
more »
« less
- PAR ID:
- 10217900
- Editor(s):
- Emerson, B.
- Date Published:
- Journal Name:
- Evolution
- Volume:
- 74
- Issue:
- 12
- ISSN:
- 1558-5646
- Page Range / eLocation ID:
- 2644-2661
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
1. The evolution of hummingbird pollination is common across angiosperm lineages throughout the Americas, presenting an opportunity to examine convergence in both traits and environments to better understand how complex phenotypes arise. We examine multiple independent shifts from bee to hummingbird pollination in the Neotropical spiral gingers (Costus) and use our data to address several common explanations for the prevalence of bee to bird pollination transitions. 2. We use floral traits of species with observed pollinators to predict pollinators of unobserved species and reconstruct ancestral pollination states on a well-resolved phylogeny. We examine whether independent transitions evolve towards the same phenotypic optimum and whether shifts to hummingbird pollination are associated with high elevation or climatic niche. 3. Traits predicting hummingbird pollination include small flower size, brightly-colored floral bracts, and the absence of nectar guides. We find many shifts to hummingbird pollination and no reversals, a single shared phenotypic optimum across hummingbird flowers, and no association between pollination and elevation or climatic niche. 4. Costus presents surprising findings compared to other plant clades. Hummingbird flowers are consistently smaller than bee flowers and primary flower colors are not predictive of pollinators. Moreover, hummingbird pollination shows no association with high elevation, as found in other tropical plants.more » « less
-
Schemske, D (Ed.)We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness inCalochortus(Liliaceae, 74 spp.).Calochortusoccupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades—inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)—began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.more » « less
-
Abstract PremiseA switch in pollinator can occur when a plant lineage enters a new habitat where the ancestral pollinator is less common, and a novel pollinator is more common. Because pollinator communities vary according to environmental tolerances and availability of resources, there may be consistent associations between pollination mode and specific regions and habitats. Such associations can be studied in lineages that have experienced multiple pollinator transitions, representing evolutionary replicates. MethodsOur study focused on a large clade ofPenstemonwildflower species in western North America, which has repeatedly evolved hummingbird‐adapted flowers from ancestral bee‐adapted flowers. For each species, we estimated geographic ranges from occurrence data and inferred environmental niches from climate, topographical, and soil data. Using a phylogenetic comparative approach, we investigated whether hummingbird‐adapted species occupy distinct geographic regions or habitats relative to bee‐adapted species. ResultsHummingbird‐adapted species occur at lower latitudes and lower elevations than bee‐adapted species, resulting in a difference in their environmental niche. Bee‐adapted species sister to hummingbird‐adapted species are also found in relatively low elevations and latitudes, similar to their hummingbird‐adapted sister species, suggesting ecogeographic shifts precede pollinator divergence. Sister species pairs—regardless of whether they differ in pollinator—show relatively little geographic range overlap. ConclusionsAdaptation to a novel pollinator may often occur in geographic and ecological isolation from ancestral populations. The ability of a given lineage to adapt to novel pollinators may critically depend on its ability to colonize regions and habitats associated with novel pollinator communities.more » « less
-
Abstract Hillieae is a group of ∼30 florally diverse, Neotropical epiphyte species. Species richness peaks in southern Central America and taxa display bat, hawkmoth, or hummingbird pollination syndromes. A phylogenetic framework is needed to understand floral and biogeographic evolution. We used target enrichment data to infer a species tree and a Bayesian time-calibrated tree including ∼83% of the species in the group. We inferred ancestral biogeography and pollination syndromes, described species’ realized bioclimatic niches via a principal component analysis, and estimated significant niche shifts using Ornstein–Uhlenbeck models to understand how different abiotic and biotic variables have shaped Hillieae evolution. We estimated that Hillieae originated in southern Central America 19 Ma and that hawkmoth pollination is the ancestral character state. Multiple independent shifts in pollination syndrome, biogeographic distribution, and realized bioclimatic niche have occurred, though bioclimatic niche is largely conserved. Using generalized linear models, we identify two interactions—between species’ biogeographic ranges and pollination syndromes, and between phylogenetic covariance and pollination syndromes—that additively affect the degree of bioclimatic niche overlap between species. Regional variation in pollination syndrome diversity and patterns of species bioclimatic niche overlap indicate a link between biogeography and species ecology in driving Hillieae diversification and syndrome evolution.more » « less
An official website of the United States government

