skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering
Unidentified infrared emission bands are ubiquitous in many astronomical sources. These bands are widely, if not unanimously, attributed to collective emissions from polycyclic aromatic hydrocarbon (PAH) molecules, yet no single species of this class has been identified in space. Using spectral matched filtering of radio data from the Green Bank Telescope, we detected two nitrile-group–functionalized PAHs, 1- and 2-cyanonaphthalene, in the interstellar medium. Both bicyclic ring molecules were observed in the TMC-1 molecular cloud. In this paper, we discuss potential in situ gas-phase PAH formation pathways from smaller organic precursor molecules.  more » « less
Award ID(s):
2044620
PAR ID:
10217927
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
371
Issue:
6535
ISSN:
0036-8075
Page Range / eLocation ID:
p. 1265-1269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polycyclic aromatic hydrocarbons (PAHs) are organic molecules containing adjacent aromatic rings. Infrared emission bands show that PAHs are abundant in space, but only a few specific PAHs have been detected in the interstellar medium. We detected 1-cyanopyrene, a cyano-substituted derivative of the related four-ring PAH pyrene, in radio observations of the dense cloud TMC-1, using the Green Bank Telescope. The measured column density of 1-cyanopyrene is 1 .52×10 12 cm−2, from which we estimate that pyrene contains up to 0.1% of the carbon in TMC-1. This abundance indicates that interstellar PAH chemistry favors the production of pyrene. We suggest that some of the carbon supplied to young planetary systems is carried by PAHs that originate in cold molecular clouds. 
    more » « less
  2. null (Ed.)
    Few anions exhibit electronically excited states, and, if they do, the one or two possible excitations typically transpire beyond the visible spectrum into the near-infrared. These few, red-shifted electronic absorption features make anions tantalizing candidates as carriers of the diffuse interstellar bands (DIBs), a series of mostly unknown, astronomically ubiquitous absorption features documented for over a century. The recent interstellar detection of benzonitrile implies that cyano-functionalized polycyclic aromatic hydrocarbon (PAH) anions may be present in space. The presently reported quantum chemical work explores the electronic properties of deprotonated benzene, naphthalene, and anthracene anions functionalized with a single cyano group. Both the absorption and emission properties of the electronically excited states are explored. The findings show that the larger anions absorption and emission energies possess both valence and dipole bound excitations in the 450–900 nm range with oscillator strengths for both types of >1×10−4. The valence and dipole bound excited state transitions will produce slightly altered substructure from one another making them appear to originate with different molecules. The known interstellar presence of related molecules, the two differing natures of the excited states for each, and the wavelength range of peaks for these cyano-functionalized PAH anions are coincident with DIB properties. Finally, the methods utilized appear to be able to predict the presence of dipole-bound excited states to within a 1.0 meV window relative to the electron binding energy. 
    more » « less
  3. When synthetic polyamines, such poly(allylamine hydrochloride) (PAH), are mixed with crosslink-forming multivalent anions, they can undergo complex coacervation. This phenomenon has recently been exploited in various applications, ranging from inorganic material synthesis, to underwater adhesion, to multiple-month release of small, water-soluble molecules. Here, using ibuprofen as a model drug molecule, we show that these coacervates may be especially effective in the long-term release of weakly amphiphilic anionic drugs. Colloidal amphiphile/polyelectrolyte complex dispersions are first prepared by mixing the amphiphilic drug (ibuprofen) with PAH. Pentavalent tripolyphosphate (TPP) ions are then added to these dispersions to form ibuprofen-loaded PAH/TPP coacervates (where the strongly-binding TPP displaces the weaker-bound ibuprofen from the PAH amine groups). The initial ibuprofen/PAH binding leads to extremely high drug loading capacities (LC-values), where the ibuprofen comprises up to roughly 30% of the coacervate mass. Conversely, the dense ionic crosslinking of PAH by TPP results in very slow release rates, where the release of ibuprofen (a small, water-soluble drug) is extended over timescales that exceed 6 months. When ibuprofen is replaced with strong anionic amphiphiles, however ( i.e. , sodium dodecyl sulfate and sodium dodecylbenzenesulfonate), the stronger amphiphile/polyelectrolyte binding disrupts PAH/TPP association and sharply increases the coacervate solute permeability. These findings suggest that: (1) as sustained release vehicles, PAH/TPP coacervates might be very attractive for the encapsulation and multiple-month release of weakly amphiphilic anionic payloads; and (2) strong amphiphile incorporation could be useful for tailoring PAH/TPP coacervate properties. 
    more » « less
  4. Abstract We explore the relationship between mid-infrared (mid-IR) and CO rotational line emission from massive star-forming galaxies, which is one of the tightest scalings in the local universe. We assemble a large set of unresolved and moderately (∼1 kpc) spatially resolved measurements of CO (1–0) and CO (2–1) intensity,ICO, and mid-IR intensity,IMIR, at 8, 12, 22, and 24μm. TheICOversusIMIRrelationship is reasonably described by a power law with slopes 0.7–1.2 and normalizationICO∼ 1 K km s−1atIMIR∼ 1 MJy sr−1. Both the slopes and intercepts vary systematically with choice of line and band. The comparison between the relations measured for CO (1–0) and CO (2–1) allow us to infer that R 21 I MIR 0.2 , in good agreement with other work. The 8μm and 12μm bands, with strong polycyclic aromatic hydrocarbon (PAH) features, show steeper CO versus mid-IR slopes than the 22 and 24μm, consistent with PAH emission arising not just from CO-bright gas but also from atomic or CO-dark gas. The CO-to-mid-IR ratio correlates with global galaxy stellar mass (M) and anticorrelates with star formation rate/M. At ∼1 kpc resolution, the first four PHANGS–JWST targets show CO-to-mid-IR relationships that are quantitatively similar to our larger literature sample, including showing the steep CO-to-mid-IR slopes for the JWST PAH-tracing bands, although we caution that these initial data have a small sample size and span a limited range of intensities. 
    more » « less
  5. Abstract Soot (sometimes referred to as black carbon) is produced when hydrocarbon fuels are burned. Our hypothesis is that polynuclear aromatic hydrocarbon (PAH) molecules are the dominant component of soot, with individual PAH molecules forming ordered stacks that agglomerate into primary particles (PP). Here we show that the PAH composition of soot can be exactly determined and spatially resolved by low‐fluence laser desorption ionization, coupled with high‐resolution mass spectrometry imaging. This analysis revealed that PAHs of 239–838 Da, containing few oxygenated species, comprise the soot observed in an ethylene diffusion flame. As informed by chemical graph theory (CGT), the vast majority of species observed in the sampled particulate matter may be described as benzenoids, consisting of only fused 6‐membered rings. Within that limit, there is clear evidence for the presence of radical PAH in the particulate samples. Further, for benzenoid structures the observed empirical formulae limit the observed isomers to those which are nearly circular with high aromatic conjugation lengths for a given aromatic ring count. These results stand in contrast to recent reports that suggest higher aliphatic composition of primary particles. 
    more » « less