Atmospheric Rivers Contribution to the Snow Accumulation Over the Southern Andes (26.5° S–37.5° S)
- Award ID(s):
- 1641960
- PAR ID:
- 10217953
- Date Published:
- Journal Name:
- Frontiers in Earth Science
- Volume:
- 8
- ISSN:
- 2296-6463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In recent years, large-scale datasets, each typically tailored to a particular problem, have become a critical factor towards fueling rapid progress in the field of computer vision. This paper describes a valuable new dataset that should accelerate research efforts on problems such as fine-grained classification, instance recognition and retrieval, and geolocalization. The dataset, comprised of more than 2400 individual castles, palaces and fortresses from more than 90 countries, contains more than 770K images in total. This paper details the dataset's construction process, the characteristics including annotations such as location (geotagged latlong and country label), construction date, Google Maps link and estimated per-class and per-image difficulty. An experimental section provides baseline experiments for important vision tasks including classification, instance retrieval and geolocalization (estimating global location from an image's visual appearance). The dataset is publicly available at vision.cs.byu.edu/castles.more » « less
-
null (Ed.)A bstract Further developing ideas set forth in [1], we discuss QCD Reggeon Field Theory (RFT) and formulate restrictions imposed on its Hamiltonian by the unitarity of underlying QCD. We identify explicitly the QCD RFT Hilbert space, provide algebra of the basic degrees of freedom (Wilson lines and their duals) and the algorithm for calculating the scattering amplitudes. We formulate conditions imposed on the “Fock states” of RFT by unitary nature of QCD, and explain how these constraints appear as unitarity constraints on possible RFT hamiltonians that generate energy evolution of scattering amplitudes. We study the realization of these constraints in the dense-dilute limit of RFT where the appropriate Hamiltonian is the JIMWLK Hamiltonian H JIMWLK . We find that the action H JIMWLK on the dilute projectile states is unitary, but acting on dense “target” states it violates unitarity and generates states with negative probabilities through energy evolution.more » « less
An official website of the United States government

