skip to main content


Title: Molecular simulations of lipid membrane partitioning and translocation by bacterial quorum sensing modulators
Quorum sensing (QS) is a bacterial communication process mediated by both native and non-native small-molecule quorum sensing modulators (QSMs), many of which have been synthesized to disrupt QS pathways. While structure-activity relationships have been developed to relate QSM structure to the activation or inhibition of QS receptors, less is known about the transport mechanisms that enable QSMs to cross the lipid membrane and access intracellular receptors. In this study, we used atomistic MD simulations and an implicit solvent model, called COSMOmic, to analyze the partitioning and translocation of QSMs across lipid bilayers. We performed umbrella sampling at atomistic resolution to calculate partitioning and translocation free energies for a set of naturally occurring QSMs, then used COSMOmic to screen the water-membrane partition and translocation free energies for 50 native and non-native QSMs that target LasR, one of the LuxR family of quorum-sensing receptors. This screening procedure revealed the influence of systematic changes to head and tail group structures on membrane partitioning and translocation free energies at a significantly reduced computational cost compared to atomistic MD simulations. Comparisons with previously determined QSM activities suggest that QSMs that are least likely to partition into the bilayer are also less active. This work thus demonstrates the ability of the computational protocol to interrogate QSM-bilayer interactions which may help guide the design of new QSMs with engineered membrane interactions.  more » « less
Award ID(s):
1817292
NSF-PAR ID:
10218300
Author(s) / Creator(s):
; ;
Editor(s):
Kulig, Waldemar
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
2
ISSN:
1932-6203
Page Range / eLocation ID:
e0246187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coarse-grained (CG) models have been successful in simulating the chemical properties of lipid bilayers, but accurate treatment of membrane proteins and lipid-protein molecular interactions remains a challenge. The CgProt force field, original developed with the multiscale coarse graining method, is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. Reassignment of select CG sidechain sites from the apolar to polar site type was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlates with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These experimental values serve as important anchor points in choosing between alternate CG models based on their observed permeation profiles, particularly for Arg, Lys and Gln residues where the all-atom OPLS solvation energy does not agree well with experiment. Available partitioning data was also used to reparameterize the representation of the peptide backbone, which needed to be made less attractive for the bilayer hydrophobic core region. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in studies of lipid-protein interactions and the conformational properties of diverse membrane protein systems. 
    more » « less
  2. KCNE3 is a potassium channel accessory transmembrane protein that regulates the function of various voltage-gated potassium channels such as KCNQ1. KCNE3 plays an important role in the recycling of potassium ion by binding with KCNQ1. KCNE3 can be found in the small intestine, colon, and in the human heart. Despite its biological significance, there is little information on the structural dynamics of KCNE3 in native-like membrane environments. Molecular dynamics (MD) simulations are a widely used as a tool to study the conformational dynamics and interactions of proteins with lipid membranes. In this study, we have utilized all-atom molecular dynamics simulations to characterize the molecular motions and the interactions of KCNE3 in a bilayer composed of: a mixture of POPC and POPG lipids (3:1), POPC alone, and DMPC alone. Our MD simulation results suggested that the transmembrane domain (TMD) of KCNE3 is less flexible and more stable when compared to the N- and C-termini of KCNE3 in all three membrane environments. The conformational flexibility of N- and C-termini varies across these three lipid environments. The MD simulation results further suggested that the TMD of KCNE3 spans the membrane width, having residue A69 close to the center of the lipid bilayers and residues S57 and S82 close to the lipid bilayer membrane surfaces. These results are consistent with previous biophysical studies of KCNE3. The outcomes of these MD simulations will help design biophysical experiments and complement the experimental data obtained on KCNE3 to obtain a more detailed understanding of its structural dynamics in the native membrane environment. 
    more » « less
  3. Lipid-anchored DNA can attach functional cargo to bilayer membranes in DNA nanotechnology, synthetic biology, and cell biology research. To optimize DNA anchoring, an understanding of DNA–membrane interactions in terms of binding strength, extent, and structural dynamics is required. Here we use experiments and molecular dynamics (MD) simulations to determine how the membrane binding of cholesterol-modified DNA depends on electrostatic and steric factors involving the lipid headgroup charge, duplexed or single-stranded DNA, and the buffer composition. The experiments distinguish between free and membrane vesicle-bound DNA and thereby reveal the surface density of anchored DNA and its binding affinity, something which had previously not been known. The Kd values range from 8.5 ± 4.9 to 466 ± 134 μM whereby negatively charged headgroups led to weak binding due to the electrostatic repulsion with respect to the negatively charged DNA. Atomistic MD simulations explain the findings and elucidate the dynamic nature of anchored DNA such as the mushroom-like conformation of single-stranded DNA hovering over the bilayer surface in contrast to a straight-up conformation of double-stranded DNA. The biophysical insight into the binding strength to membranes as well as the molecular accessibility of DNA for hybridization to molecular cargo is expected to facilitate the creation of biomimetic DNA versions of natural membrane nanopores and cytoskeletons for research and nanobiotechnology. 
    more » « less
  4. Human voltage-gated sodium (hNaV) channels are responsible for initiating and propagating action potentials in excitable cells, and mutations have been associated with numerous cardiac and neurological disorders. hNaV1.7 channels are expressed in peripheral neurons and are promising targets for pain therapy. The tarantula venom peptide protoxin-II (PTx2) has high selectivity for hNaV1.7 and is a valuable scaffold for designing novel therapeutics to treat pain. Here, we used computational modeling to study the molecular mechanisms of the state-dependent binding of PTx2 to hNaV1.7 voltage-sensing domains (VSDs). Using Rosetta structural modeling methods, we constructed atomistic models of the hNaV1.7 VSD II and IV in the activated and deactivated states with docked PTx2. We then performed microsecond-long all-atom molecular dynamics (MD) simulations of the systems in hydrated lipid bilayers. Our simulations revealed that PTx2 binds most favorably to the deactivated VSD II and activated VSD IV. These state-specific interactions are mediated primarily by PTx2’s residues R22, K26, K27, K28, and W30 with VSD and the surrounding membrane lipids. Our work revealed important protein–protein and protein–lipid contacts that contribute to high-affinity state-dependent toxin interaction with the channel. The workflow presented will prove useful for designing novel peptides with improved selectivity and potency for more effective and safe treatment of pain.

     
    more » « less
  5. ABSTRACT

    Calcium ions (Ca2+) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca2+models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca2+models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA–DNA interactions. In the simulations performed using the two standard models, Ca2+ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2and CaCl2solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca2+ions in the simulations of Ca2+‐mediated DNA–DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter‐DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca2+to DNA phosphate is strong enough to affect the direction of the electric field‐driven translocation of DNA through a solid‐state nanopore. To address these shortcomings of the standard Ca2+model, we introduce a custom model of a hydrated Ca2+ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca2+can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752–763, 2016.

     
    more » « less