skip to main content


Title: Open-Access Full-Duplex Wireless in the ORBIT and COSMOS Testbeds
ABSTRACT In order to support experimentation with full-duplex (FD) wireless, we recently integrated two generations of FD radios in the open-access ORBIT and COSMOS testbeds. First, we integrated a customized 1st generation (Gen-1) narrowband FD radio in the indoor ORBIT testbed. Then, we integrated two 2 nd generation (Gen-2) wideband FD radios in the city-scale PAWR COSMOS testbed. Each integrated FD radio consists of an antenna, a customized RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a remotely accessible compute node. The Gen-1/Gen-2 RF SI canceller box includes an RF canceller printed circuit board (PCB) which emulates a customized integrated circuit (IC) RF canceller implementation. The amplitude- and phase-based Gen-1 narrowband RF canceller achieves 40 dB RF SIC across 5 MHz. The Gen-2 wideband canceller is based on the technique of frequency-domain equalization (FDE) and achieves 50 dB RF SI cancellation (SIC) across 20 MHz. In this paper, we present the design and testbed integration of the two generations of FD radios. We then present example experiments that can be remotely run and modified by experimenters. Finally, we discuss future improvements and potential FD wireless experiments that can be supported by these open-access FD radios integrated in the COSMOS testbed.  more » « less
Award ID(s):
1910757 1827923
NSF-PAR ID:
10218462
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
in Proc. ACM MobiCom'20 Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization (WiNTECH)
Page Range / eLocation ID:
9 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT To support experimentation with full-duplex (FD) wireless, we recently integrated two FlexICoN Gen-2 wideband FD radios in the open-access, city-scale NSF PAWR COSMOS testbed. Each integrated FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio, and a remotely accessible compute node. The RF SI canceller box includes an RF canceller printed circuit board which emulates an integrated circuit implementation based on the technique of frequency-domain equalization. The Gen-2 canceller box can achieve up to 50 dB RF SI cancellation across 20 MHz bandwidth. In this demo, we present the design and implementation of the open-acccess, remotely accessible FD radios that are integrated in the indoor COSMOS Sandbox 2 at Columbia University. We also demonstrate example experiments that are available to researchers, where demo participants can observe the visualized performance of the open-access FD radios 
    more » « less
  2. In order to support experimentation with full-duplex (FD) wireless, we integrated the FlexICoN Gen-2 wideband FD radio with the city-scale PAWR COSMOS testbed [1]. In particular, the implemented FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a compute node. The RF canceller box includes an RF SI canceller implemented using discrete components on a printed circuit board (PCB), which emulates its RFIC canceller counterpart. The Gen-2 RF SI canceller achieves 50 dB RF SI cancellation across 20 MHz bandwidth using the technique of frequency-domain equalization (FDE) [2]. In this abstract, we present the design and implementation of the remotely accessible Gen-2 wideband FD radio integrated with the COSMOS sandbox at Columbia University. We also present an example real-time wideband FD wireless link demonstration using the GNU Radio software. 
    more » « less
  3. In order to support experimentation with full-duplex (FD) wireless, we integrated the FlexICoN Gen-2 wideband FD radio with the city-scale PAWR COSMOS testbed [1]. In particular, the implemented FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a compute node. The RF canceller box includes an RF SI canceller implemented using discrete components on a printed circuit board (PCB), which emulates its RFIC canceller counterpart. The Gen-2 RF SI canceller achieves 50 dB RF SI cancellation across 20 MHz bandwidth using the technique of frequency-domain equalization (FDE) [2]. In this abstract, we present the design and implementation of the remotely accessible Gen-2 wideband FD radio integrated with the COSMOS sandbox at Columbia University. We also present an example real-time wideband F 
    more » « less
  4. Full-duplex (FD) wireless can signi�cantly enhance spectrum e�ciency but requires tremendous amount of selfinterference (SI) cancellation. Recent advances in the RFIC community enabled wideband RF SI cancellation (SIC) in integrated circuits (ICs) via frequency-domain equalization (FDE), where RF �lters channelize the SI signal path. Unlike other FD implementations, that mostly rely on delay lines, FDE-based cancellers can be realized in small-formfactor devices. However, the fundamental limits and higher layer challenges associated with these cancellers were not explored yet. Therefore, and in order to support the integration with a software-de�ned radio (SDR) and to facilitate experimentation in a testbed with several nodes, we design and implement an FDE-based RF canceller on a printed circuit board (PCB). We derive and experimentally validate the PCB canceller model and present a canceller con�guration scheme based on an optimization problem. We then extensively evaluate the performance of the FDE-based FD radio in the SDR testbed. Experiments show that it achieves 95 dB overall SIC (52 dB from RF SIC) across 20 MHz bandwidth, and an average link-level FD gain of 1.87⇥. We also conduct experiments in: (i) uplink-downlink networks with inter-user interference, and (ii) heterogeneous networks with half-duplex and FD users. The experimental FD gains in the two types of networks con�rm previous analytical results. They depend on the users’ SNR values and the number of FD users, and are 1.14⇥–1.25⇥ and 1.25⇥–1.73⇥, respectively. Finally, we numerically evaluate and compare the RFIC and PCB implementations and study various design tradeo�s. 
    more » « less
  5. Full-duplex (FD) wireless can significantly enhance spectrum efficiency but requires tremendous amount of selfinterference (SI) cancellation. Recent advances in the RFIC community enabled wideband RF SI cancellation (SIC) in integrated circuits (ICs) via frequency-domain equalization (FDE), where RF filters channelize the SI signal path. Unlike other FD implementations, that mostly rely on delay lines, FDE-based cancellers can be realized in small-formfactor devices. However, the fundamental limits and higher layer challenges associated with these cancellers were not explored yet. Therefore, and in order to support the integration with a software-defined radio (SDR) and to facilitate experimentation in a testbed with several nodes, we design and implement an FDE-based RF canceller on a printed circuit board (PCB). We derive and experimentally validate the PCB canceller model and present a canceller configuration scheme based on an optimization problem. We then extensively evaluate the performance of the FDE-based FD radio in the SDR testbed. Experiments show that it achieves 95 dB overall SIC (52 dB from RF SIC) across 20 MHz bandwidth, and an average link-level FD gain of 1.87×. We also conduct experiments in: (i) uplink-downlink networks with inter-user interference, and (ii) heterogeneous networks with half-duplex and FD users. The experimental FD gains in the two types of networks confirm previous analytical results. They depend on the users’ SNR values and the number of FD users, and are 1.14×–1.25× and 1.25×–1.73×, respectively. Finally, we numerically evaluate and compare the RFIC and PCB implementations and study various design tradeoffs. 
    more » « less