- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1635950
- Publication Date:
- NSF-PAR ID:
- 10218644
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 45
- Page Range or eLocation-ID:
- 28160 to 28166
- ISSN:
- 0027-8424
- Sponsoring Org:
- National Science Foundation
More Like this
-
Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions,more »
-
Raina, Jean-Baptiste (Ed.)ABSTRACT Predicting outcomes of marine disease outbreaks presents a challenge in the face of both global and local stressors. Host-associated microbiomes may play important roles in disease dynamics but remain understudied in marine ecosystems. Host–pathogen–microbiome interactions can vary across host ranges, gradients of disease, and temperature; studying these relationships may aid our ability to forecast disease dynamics. Eelgrass, Zostera marina , is impacted by outbreaks of wasting disease caused by the opportunistic pathogen Labyrinthula zosterae . We investigated how Z. marina phyllosphere microbial communities vary with rising wasting disease lesion prevalence and severity relative to plant and meadow characteristics like shoot density, longest leaf length, and temperature across 23° latitude in the Northeastern Pacific. We detected effects of geography (11%) and smaller, but distinct, effects of temperature (30-day max sea surface temperature, 4%) and disease (lesion prevalence, 3%) on microbiome composition. Declines in alpha diversity on asymptomatic tissue occurred with rising wasting disease prevalence within meadows. However, no change in microbiome variability (dispersion) was detected between asymptomatic and symptomatic tissues. Further, we identified members of Cellvibrionaceae, Colwelliaceae, and Granulosicoccaceae on asymptomatic tissue that are predictive of wasting disease prevalence across the geographic range (3,100 kilometers). Functional roles of Colwelliaceae andmore »
-
Abstract Dissolved oxygen (DO) concentrations shape the biogeochemistry and ecological structure of aquatic ecosystems; as a result, understanding how and why DO varies in space and time is of fundamental importance. Using high-resolution,
in situ DO time-series collected over the course of a year in a novel marine ecosystem (Jellyfish Lake, Palau), we show that DO declined throughout the marine lake and subsequently recovered in the upper water column. These shifts were accompanied by variations in water temperature and were correlated to changes in wind, precipitation, and especially sea surface height that occurred during the 2015–2016 El Niño-Southern Oscillation event. Multiple approaches used to calculate rates of community respiration, net community production, and gross primary production from DO changes showed that DO consumption and production did not accelerate nor collapse; instead, their variance increased during lake deoxygenation and recovery, and then stabilized. Spatial and temporal variations in rates were significantly related to climatic variability and changes in DO, and causality testing indicated that these relationships were both correlative and causative. Our data indicate that climatic, physical, and biogeochemical properties and processes collectively regulated DO, producing linked feedbacks that drove DO decline and recovery. -
Temperature and mass scaling affect cutaneous and pulmonary respiratory performance in a diving frogGlobal climate change is altering patterns of temperature variation, with unpredictable consequences for species and ecosystems. The Metabolic Theory of Ecology (MTE) provides a powerful framework for predicting climate change impacts on ectotherm metabolic performance. MTE postulates that physiological and ecological processes are limited by organism metabolic rates, which scale predictably with body mass and temperature. The purpose of this study was to determine if different metabolic proxies generate different empirical estimates of key MTE model parameters for the aquatic frog Xenopus laevis when allowed to exhibit normal diving behavior. We used a novel methodological approach in combining a flow-through respirometry setup with the open-source Arduino platform to measure mass and temperature effects on 4 different proxies for whole-body metabolism (total O2 consumption, cutaneous O2 consumption, pulmonary O2 consumption, and ventilation frequency), following thermal acclimation to one of 3 temperatures (8°C, 17°C, or 26°C). Different metabolic proxies generated different mass-scaling exponents (b) and activation energy (EA) estimates, highlighting the importance of metabolic proxy selection when parameterizing MTE-derived models. Animals acclimated to 17°C had higher O2 consumption across all temperatures, but thermal acclimation did not influence estimates of key MTE parameters EA and b. Cutaneous respiration generated lower MTE parameters thanmore »
-
Background Ecological communities tend to be spatially structured due to environmental gradients and/or spatially contagious processes such as growth, dispersion and species interactions. Data transformation followed by usage of algorithms such as Redundancy Analysis (RDA) is a fairly common approach in studies searching for spatial structure in ecological communities, despite recent suggestions advocating the use of Generalized Linear Models (GLMs). Here, we compared the performance of GLMs and RDA in describing spatial structure in ecological community composition data. We simulated realistic presence/absence data typical of many β -diversity studies. For model selection we used standard methods commonly used in most studies involving RDA and GLMs. Methods We simulated communities with known spatial structure, based on three real spatial community presence/absence datasets (one terrestrial, one marine and one freshwater). We used spatial eigenvectors as explanatory variables. We varied the number of non-zero coefficients of the spatial variables, and the spatial scales with which these coefficients were associated and then compared the performance of GLMs and RDA frameworks to correctly retrieve the spatial patterns contained in the simulated communities. We used two different methods for model selection, Forward Selection (FW) for RDA and the Akaike Information Criterion (AIC) for GLMs. The performancemore »