skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coresets for Data-efficient Training of Machine Learning Models
Incremental gradient (IG) methods, such as stochastic gradient descent and its variants are commonly used for large scale optimization in machine learning. Despite the sustained effort to make IG methods more data-efficient, it remains an open question how to select a training data subset that can theoretically and practically perform on par with the full dataset. Here we develop CRAIG, a method to select a weighted subset (or coreset) of training data that closely estimates the full gradient by maximizing a submodular function. We prove that applying IG to this subset is guaranteed to converge to the (near)optimal solution with the same convergence rate as that of IG for convex optimization. As a result, CRAIG achieves a speedup that is inversely proportional to the size of the subset. To our knowledge, this is the first rigorous method for data-efficient training of general machine learning models. Our extensive set of experiments show that CRAIG, while achieving practically the same solution, speeds up various IG methods by up to 6x for logistic regression and 3x for training deep neural networks.  more » « less
Award ID(s):
1918940
PAR ID:
10219230
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Machine Learning (ICML)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Incremental gradient (IG) methods, such as stochastic gradient descent and its variants are commonly used for large scale optimization in machine learning. Despite the sustained effort to make IG methods more data-efficient, it remains an open question how to select a training data subset that can theoretically and practically perform on par with the full dataset. Here we develop CRAIG, a method to select a weighted subset (or coreset) of training data that closely estimates the full gradient by maximizing a submodular function. We prove that applying IG to this subset is guaranteed to converge to the (near)optimal solution with the same convergence rate as that of IG for convex optimization. As a result, CRAIG achieves a speedup that is inversely proportional to the size of the subset. To our knowledge, this is the first rigorous method for data-efficient training of general machine learning models. Our extensive set of experiments show that CRAIG, while achieving practically the same solution, speeds up various IG methods by up to 6x for logistic regression and 3x for training deep neural networks. 
    more » « less
  2. null (Ed.)
    Recently decentralized optimization attracts much attention in machine learning because it is more communication-efficient than the centralized fashion. Quantization is a promising method to reduce the communication cost via cutting down the budget of each single communication using the gradient compression. To further improve the communication efficiency, more recently, some quantized decentralized algorithms have been studied. However, the quantized decentralized algorithm for nonconvex constrained machine learning problems is still limited. Frank-Wolfe (a.k.a., conditional gradient or projection-free) method is very efficient to solve many constrained optimization tasks, such as low-rank or sparsity-constrained models training. In this paper, to fill the gap of decentralized quantized constrained optimization, we propose a novel communication-efficient Decentralized Quantized Stochastic Frank-Wolfe (DQSFW) algorithm for non-convex constrained learning models. We first design a new counterexample to show that the vanilla decentralized quantized stochastic Frank-Wolfe algorithm usually diverges. Thus, we propose DQSFW algorithm with the gradient tracking technique to guarantee the method will converge to the stationary point of non-convex optimization safely. In our theoretical analysis, we prove that to achieve the stationary point our DQSFW algorithm achieves the same gradient complexity as the standard stochastic Frank-Wolfe and centralized Frank-Wolfe algorithms, but has much less communication cost. Experiments on matrix completion and model compression applications demonstrate the efficiency of our new algorithm. 
    more » « less
  3. null (Ed.)
    Although the distributed machine learning methods can speed up the training of large deep neural networks, the communication cost has become the non-negligible bottleneck to constrain the performance. To address this challenge, the gradient compression based communication-efficient distributed learning methods were designed to reduce the communication cost, and more recently the local error feedback was incorporated to compensate for the corresponding performance loss. However, in this paper, we will show that a new "gradient mismatch" problem is raised by the local error feedback in centralized distributed training and can lead to degraded performance compared with full-precision training. To solve this critical problem, we propose two novel techniques, 1) step ahead and 2) error averaging, with rigorous theoretical analysis. Both our theoretical and empirical results show that our new methods can handle the "gradient mismatch" problem. The experimental results show that we can even train faster with common gradient compression schemes than both the full-precision training and local error feedback regarding the training epochs and without performance loss. 
    more » « less
  4. In the realm of cybersecurity, intrusion detection systems (IDS) detect and prevent attacks based on collected computer and network data. In recent research, IDS models have been constructed using machine learning (ML) and deep learning (DL) methods such as Random Forest (RF) and deep neural networks (DNN). Feature selection (FS) can be used to construct faster, more interpretable, and more accurate models. We look at three different FS techniques; RF information gain (RF-IG), correlation feature selection using the Bat Algorithm (CFS-BA), and CFS using the Aquila Optimizer (CFS-AO). Our results show CFS-BA to be the most efficient of the FS methods, building in 55% of the time of the best RF-IG model while achieving 99.99% of its accuracy. This reinforces prior contributions attesting to CFS-BA’s accuracy while building upon the relationship between subset size, CFS score, and RF-IG score in final results. 
    more » « less
  5. Metric magnitude of a point cloud is a measure of its ``size. It has been adapted to various mathematical contexts and recent work suggests that it can enhance machine learning and optimization algorithms. But its usability is limited due to the computational cost when the dataset is large or when the computation must be carried out repeatedly (e.g. in model training). In this paper, we study the magnitude computation problem, and show efficient ways of approximating it. We show that it can be cast as a convex optimization problem, but not as a submodular optimization. The paper describes two new algorithms -- an iterative approximation algorithm that converges fast and is accurate in practice, and a subset selection method that makes the computation even faster. It has previously been proposed that the magnitude of model sequences generated during stochastic gradient descent is correlated to the generalization gap. Extension of this result using our more scalable algorithms shows that longer sequences bear higher correlations. We also describe new applications of magnitude in machine learning -- as an effective regularizer for neural network training, and as a novel clustering criterion. 
    more » « less