skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of a Bioinspired, Self‐Adhering, and Drug‐Eluting Laryngotracheal Patch
Objectives/Hypothesis Novel laryngotracheal wound coverage devices are limited by complex anatomy, smooth surfaces, and dynamic pressure changes and airflow during breathing. We hypothesize that a bioinspired mucoadhesive patch mimicking how geckos climb smooth surfaces will permit sutureless wound coverage and also allow drug delivery. Study Design ex‐vivo. Methods Polycaprolactone (PCL) fibers were electrospun onto a substrate and polyethylene glycol (PEG) – acrylate flocks in varying densities were deposited to create a composite patch. Sample topography was assessed with laser profilometry, material stiffness with biaxial mechanical testing, and mucoadhesive testing determined cohesive material failure on porcine tracheal tissue. Degradation rate was measured over 21 days in vitro along with dexamethasone drug release profiles. Material handleability was evaluated via suture retention and in cadaveric larynges. Results Increased flocking density was inversely related to cohesive failure in mucoadhesive testing, with a flocking density of PCL‐PEG‐2XFLK increasing failure strength to 6880 ± 1810 Pa compared to 3028 ± 791 in PCL‐PEG‐4XFLK density and 1182 ± 262 in PCL‐PEG‐6XFLK density. The PCL‐PEG‐2XFLK specimens had a higher failure strength than PCL alone (1404 ± 545 Pa) or PCL‐PEG (2732 ± 840). Flocking progressively reduced composite stiffness from 1347 ± 15 to 763 ± 21 N/m. Degradation increased from 12% at 7 days to 16% after 10 days and 20% after 21 days. Cumulative dexamethasone release at 0.4 mg/cm2 concentration was maintained over 21 days. Optimized PCL‐PEG‐2XFLK density flocked patches were easy to maneuver endoscopically in laryngeal evaluation. Conclusions This novel, sutureless, patch is a mucoadhesive platform suitable to laryngeal and tracheal anatomy with drug delivery capability.  more » « less
Award ID(s):
1847103
PAR ID:
10219416
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Laryngoscope
ISSN:
0023-852X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Corticosteroid-eluting endotracheal tubes (ETTs) were developed and employed in a swine laryngotracheal injury model to maintain airway patency and provide localized drug delivery to inhibit fibrotic scarring. Polycaprolactone (PCL) fibers with or without dexamethasone were electrospun onto the ETT surface PCL-only coated ETTs and placed in native airways of 18 Yorkshire swine. Regular and dexamethasone-PCL coated ETTs were placed in airways of another 18 swine injured by inner laryngeal mucosal abrasion. All groups were evaluated after 3, 7 and 14 days (n = 3/treatment/time). Larynges were bisected and localized stiffness determined by normal indentation, then sequentially matched with histological assessment. In the native airway, tissue stiffness with PCL-only ETT placement increased significantly from 3 to 7 days (p = 0.0016) and 3 to 14 days (p < 0.0001) while dexamethasone-PCL ETT placement resulted in stiffness decreasing from 7 to 14 days (p = 0.031). In the injured airway, localized stiffness at 14 days was significantly greater after regular ETT placement (23.1 ± 0.725 N/m) versus dexamethasone-PCL ETTs (17.10 ± 0.930 N/m,p < 0.0001). Dexamethasone-loaded ETTs were found to reduce laryngotracheal tissue stiffening after simulated intubation injury compared to regular ETTs, supported by a trend of reduced collagen in the basement membrane in injured swine over time. Findings suggest localized corticosteroid delivery allows for tissue stiffness control and potential use as an approach for prevention and treatment of scarring caused by intubation injury. 
    more » « less
  2. Abstract Chronic wounds present significant therapeutic challenges due to prolonged inflammation and bacterial infections, impeding healing. Conventional medicinal dressings typically deliver a single drug with a fixed release profile and lack responsiveness to variations in wound size, nature, or severity. This study introduces an innovative microneedle (MN) patch designed with different microneedle geometries and capable of dual‐drug delivery to address irregular wounds and complex therapeutic requirements. Utilizing CO₂ laser lithography, microneedle molds are fabricated with diverse geometries by precisely controlling laser parameters such as speed, power, and focus, achieving needle heights ranging from 162 ± 30 µm to 1570 ± 40 µm. The patch facilitates simultaneous delivery of simvastatin (SIM) for anti‐inflammatory and tetracycline hydrochloride (TH) for antibacterial properties, targeting different skin depths. In vitro diffusion studies confirm geometry‐dependent drug release profiles, with SIM achieving controlled release over three days and TH exhibiting sustained release over four days. Biocompatibility assays confirmed safety and enhanced fibroblast migration is noted in wound‐healing studies. Antimicrobial testing reveals a 99.9% reduction in bacterial viability. This cost‐effective and scalable approach enables precise, localized delivery and customization of MN arrays to match various wound geometries, offering a versatile platform for personalized medicine and improved chronic wound management. 
    more » « less
  3. Abstract BackgroundLaryngeal injury associated with traumatic or prolonged intubation may lead to voice, swallow, and airway complications. The interplay between inflammation and microbial population shifts induced by intubation may relate to clinical outcomes. The objective of this study was to investigate laryngeal mechanics, tissue inflammatory response, and local microbiome changes with laryngotracheal injury and localized delivery of therapeutics via drug-eluting endotracheal tube. MethodsA simulated traumatic intubation injury was created in Yorkshire crossbreed swine under direct laryngoscopy. Endotracheal tubes electrospun with roxadustat or valacyclovir- loaded polycaprolactone (PCL) fibers were placed in the injured airway for 3, 7, or 14 days (n = 3 per group/time and ETT type). Vocal fold stiffness was then evaluated with normal indentation and laryngeal tissue sections were histologically examined. Immunohistochemistry and inflammatory marker profiling were conducted to evaluate the inflammatory response associated with injury and ETT placement. Additionally, ETT biofilm formation was visualized using scanning electron microscopy and micro-computed tomography, while changes in the airway microbiome were profiled through 16S rRNA sequencing. ResultsLaryngeal tissue with roxadustat ETT placement had increasing localized stiffness outcomes over time and histological assessment indicated minimal epithelial ulceration and fibrosis, while inflammation remained severe across all timepoints. In contrast, vocal fold tissue with valacyclovir ETT placement showed no significant changes in stiffness over time; histological analysis presented a reduction in epithelial ulceration and inflammation scores along with increased fibrosis observed at 14 days. Immunohistochemistry revealed a decline in M1 and M2 macrophage markers over time for both ETT types. Among the cytokines, IL-8 levels differed significantly between the roxadustat and valacyclovir ETT groups, while no other cytokines showed statistically significant differences. Additionally, increased biofilm formation was observed in the coated ETTs with notable alterations in microbiota distinctive to each ETT type and across time. ConclusionThe injured and intubated airway resulted in increased laryngeal stiffness. Local inflammation and the type of therapeutic administered impacted the bacterial composition within the upper respiratory microbiome, which in turn mediated local tissue healing and recovery. 
    more » « less
  4. Abstract Engineered composite scaffolds composed of natural and synthetic polymers exhibit cooperation at the molecular level that closely mimics tissue extracellular matrix's (ECM) physical and chemical characteristics. However, due to the lack of smooth intermix capability of natural and synthetic materials in the solution phase, bio‐inspired composite material development has been quite challenged. In this research, we introduced new bio‐inspired material blending techniques to fabricate nanofibrous composite scaffolds of chitin nanofibrils (CNF), a natural hydrophilic biomaterial and poly (ɛ‐caprolactone) (PCL), a synthetic hydrophobic‐biopolymer. CNF was first prepared by acid hydrolysis technique and dispersed in trifluoroethanol (TFE); and second, PCL was dissolved in TFE and mixed with the chitin solution in different ratios. Electrospinning and spin‐coating technology were used to form nanofibrous mesh and films, respectively. Physicochemical properties, such as mechanical strength, and cellular compatibility, and structural parameters, such as morphology, and crystallinity, were determined. Toward the potential use of this composite materials as a support membrane in blood–brain barrier application (BBB), human umbilical vein endothelial cells (HUVECs) were cultured, and transendothelial electrical resistance (TEER) was measured. Experimental results of the composite materials with PCL/CNF ratios from 100/00 to 25/75 showed good uniformity in fiber morphology and suitable mechanical properties. They retained the excellent ECM‐like properties that mimic synthetic‐bio‐interface that has potential application in biomedical fields, particularly tissue engineering and BBB applications. 
    more » « less
  5. Innovation in biomedical science is always a field of interest for researchers. Drug delivery, being one of the key areas of biomedical science, has gained considerable significance. The utilization of simple yet effective techniques such as electrospinning has undergone significant development in the field of drug delivery. Various polymers such as PEG (polyethylene glycol), PLGA (Poly(lactic-co-glycolic acid)), PLA(Polylactic acid), and PCA (poly(methacrylate citric acid)) have been utilized to prepare electrospinning-based drug delivery systems (DDSs). Polyvinyl alcohol (PVA) has recently gained attention because of its biocompatibility, biodegradability, non-toxicity, and ideal mechanical properties as these are the key factors in developing DDSs. Moreover, it has shown promising results in developing DDSs individually and when combined with natural and synthetic polymers such as chitosan and polycaprolactone (PCL). Considering the outstanding properties of PVA, the aim of this review paper was therefore to summarize these recent advances by highlighting the potential of electrospun PVA for drug delivery systems. 
    more » « less