skip to main content


Title: A Hydrogel Vitreous Substitute that Releases Antioxidant
Abstract

Current experimental vitreous substitutes only replace the physical functions of the natural vitreous humor. Removal of the native vitreous disrupts oxygen homeostasis in the eye, causing oxidative damage to the lens that likely results in cataract formation. Neither current clinical treatments nor other experimental vitreous substitutes consider the problem of oxidative stress after vitrectomy. To address this problem, biomimetic hydrogels are prepared by free radical polymerization of poly(ethylene glycol) methacrylate and poly(ethylene glycol) diacrylate. These hydrogels have similar mechanical and optical properties to the vitreous. The hydrogels are injectable through small‐gauge needles and demonstrate in vitro biocompatibility with human retinal and lens epithelial cells. The hydrogels and added vitamin C, an antioxidant, show a synergistic effect in protecting ocular cells against reactive oxygen species, which fulfills a chemical function of the natural vitreous. These hydrogels have the potential to prevent post‐vitrectomy cataract formation and reduce the cost of additional surgeries.

 
more » « less
Award ID(s):
1852298
NSF-PAR ID:
10459271
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Bioscience
Volume:
20
Issue:
2
ISSN:
1616-5187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study establishes a novel microfluidic platform for rapid encapsulation of cells at high densities in photocrosslinkable microspherical hydrogels including poly(ethylene glycol)‐diacrylate, poly(ethylene glycol)‐fibrinogen, and gelatin methacrylate. Cell‐laden hydrogel microspheres are advantageous for many applications from drug screening to regenerative medicine. Employing microfluidic systems is considered the most efficient method for scale‐up production of uniform microspheres. However, existing platforms have been constrained by traditional microfabrication techniques for device fabrication, restricting microsphere diameter to below 200 µm and making iterative design changes time‐consuming and costly. Using a new molding technique, the microfluidic device employs a modified T‐junction design with readily adjustable channel sizes, enabling production of highly uniform microspheres with cell densities (10–60 million cells mL−1) and a wide range of diameters (300–1100 µm), which are critical for realizing downstream applications, through rapid photocrosslinking (≈1 s per microsphere). Multiple cell types are encapsulated at rates of up to 1 million cells per min, are evenly distributed throughout the microspheres, and maintain high viability and appropriate cellular activities in long‐term culture. This microfluidic encapsulation platform is a valuable and readily adoptable tool for numerous applications, including supporting injectable cell therapy, bioreactor‐based cell expansion and differentiation, and high throughput tissue sphere‐based drug testing assays.

     
    more » « less
  2. Abstract

    Photodynamic hydrogel biomaterials have demonstrated great potential for user-triggered therapeutic release, patterned organoid development, and four-dimensional control over advanced cell fates in vitro. Current photosensitive materials are constrained by their reliance on high-energy ultraviolet light (<400 nm) that offers poor tissue penetrance and limits access to the broader visible spectrum. Here, we report a family of three photolabile material crosslinkers that respond rapidly and with unique tricolor wavelength-selectivity to low-energy visible light (400–617 nm). We show that when mixed with multifunctional poly(ethylene glycol) macromolecular precursors, ruthenium polypyridyl- andortho-nitrobenzyl (oNB)-based crosslinkers yield cytocompatible biomaterials that can undergo spatiotemporally patterned, uniform bulk softening, and multiplexed degradation several centimeters deep through complex tissue. We demonstrate that encapsulated living cells within these photoresponsive gels show high viability and can be successfully recovered from the hydrogels following photodegradation. Moving forward, we anticipate that these advanced material platforms will enable new studies in 3D mechanobiology, controlled drug delivery, and next-generation tissue engineering applications.

     
    more » « less
  3. Abstract

    Drug delivery and cell transplantation require minimally invasive deployment strategies such as injection through clinically relevant high‐gauge needles. Supramolecular hydrogels comprising dodecyl‐modified hydroxypropylmethylcellulose and poly(ethylene glycol)‐block‐poly(lactic acid) have been previously demonstrated for the delivery of drugs and proteins. Here, it is demonstrated that the rheological properties of these hydrogels allow for facile injectability, an increase of cell viability after injection when compared to cell viabilities of cells injected in phosphate‐buffered saline, and homogeneous cell suspensions that do not settle. These hydrogels are injected at 1 mL min−1with pressures less than 400 kPa, despite the solid‐like properties of the gel when at rest. The cell viabilities immediately after injection are greater than 86% for adult human dermal fibroblasts, human umbilical vein cells, smooth muscle cells, and human mesenchymal stem cells. Cells are shown to remain suspended and proliferate in the hydrogel at the same rate as observed in cell media. The work expands on the versatility of these hydrogels and lays a foundation for the codelivery of drugs, proteins, and cells.

     
    more » « less
  4. Abstract

    A series of glucose‐based degradable superabsorbent hydrogels with potential to tackle issues associated with sustainability, flooding, and drought has been designed and fabricated. These hydrophilic networks were constructed through integrating glucose as a primary building block –into cyclic oligomers and block polymers, which were combined into mechanically‐interlocked slide‐ring crosslinked materials. Crosslinking of slide ring α‐cyclodextrin/poly(ethylene glycol)‐type polyrotaxanes with acid‐functionalized ABA triblock copolymers comprised of mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate))‐b‐poly(ethylene glycol)‐b‐mercaptopropionic acid‐functionalized poly(glucose carbonate (ethyl propargyl carbonate)), afforded degradable superabsorbent hydrogels through establishment of chemically‐labile ester linkages, in addition to glycosidic and carbonate groups of the polymer precursors. With an emphasis on development of fundamental synthetic design strategies to achieve high‐performance superabsorbent hydrogels that could behave as robust materials, which are derived from natural components and exhibit hydrolytic degradability, effort went into optimization of the composition, structure, and topology leading to water uptake capacities >30× by mass. Investigations of composition‐structure‐topology‐morphology effects on properties as a function of variations of PEG main chain length, degree of α‐cyclodextrin coverage, and concentration of pre‐gel solution, indicated that the slide‐ring polymer and triblock copolymer networks feature high water uptake, tunable mechanical properties, and sustainability with construction from renewable natural products and in‐built degradability.

     
    more » « less
  5. Macrophages may play a beneficial role in blood vessel development. To study the role of macrophages in vessel development for regenerative medicine, a bioactive poly(ethylene glycol)‐based hydrogel scaffold that is modified for integrin‐mediated cell adhesion and biodegradation by matrix‐metalloproteinases 2 and 9 is utilized. This scaffold serves as a tunable cell microenvironment and supports the formation of microvascular networks. When encapsulated with endothelial cells, macrophages enhance vessel tubule volume within the hydrogel by nearly twofold compared to endothelial cells alone in hydrogels. Additionally, macrophages in the hydrogel alter their morphology in an endothelial cell‐dependent manner. Macrophages alone maintain high circularity with only 1% of the population demonstrating circularity ≤0.5 (indicating cell spreading), but when co‐encapsulated with endothelial cells, 46% of macrophages have a circularity ≤0.5. Macrophages 0–5 µm away from an endothelial cell have a circularity of 0.48 ± 0.22 whereas macrophages >20 µm away have a circularity of 0.83 ± 0.07. Two types of macrophage–endothelial cell interactions are seen: macrophages behaving as pericyte‐like cells and macrophages bridging between endothelial cells. Macrophages may be a novel cell target for regenerative medicine efforts where vasculature is often vital to success.

     
    more » « less