Conducting polymer hydrogels combine electrical conductivity and tunable water content, rendering them strong candidates for a range of applications including biosensors, cell culture platforms, and energy storage devices. However, these hydrogels are mechanically brittle and prone to damage, prohibiting their use in emerging applications involving dynamic movement and large mechanical deformation. Here, we demonstrate that applying the concept of architecture to conducting polymer hydrogels can circumvent these impediments. A stereolithography 3D printing method is developed to successfully fabricate such hydrogels in complex lattice structures. The resulting hydrogels exhibit elastic compressibility, high fracture strain, enhanced cycling stability, and damage-tolerant properties despite their chemical composition being identical to their brittle, solid counterparts. Furthermore, concentrating the deformation to the 3D geometry, rather than polymer microstructure, effectively decouples the mechanical and electrical properties of the hydrogel lattices from their intrinsic properties associated with their chemical composition. The confluence of these new physical properties for conducting polymer hydrogels opens broad opportunities for a myriad of dynamic applications.
more »
« less
Compressive failure of hydrogel spheres
Hydrogels have gained recent attention for biomedical applications because of their large water content, which imparts biocompatibility. However, their mechanical properties can be limiting. There has been significant recent interest in the strength and fracture toughness of hydrogel materials in addition to their stiffness and time-dependent behavior. Hydrogels can fail in a brittle manner, although they are extremely compliant. In this work, the failure and fracture of hydrogels are examined using a compression test of spherical hydrogel particles. Spheres of commercially available polyacrylamide–potassium polyacrylate were hydrated and tested to failure in compression as a function of loading rate. The spheres exhibited little relaxation when compressed to small fixed displacements. The distributions of strength values obtained were examined in a particle fracture framework previously used for brittle ceramics. There was loading rate dependence apparent in the measured peak force and calculated peak strength values, but the data fell on a single empirical distribution function of strength for the hydrogels regardless of loading rate. Strength values for these hydrogels were mostly in the range of 0.05–0.3 MPa, illustrating the challenges using hydrogels for mechanically demanding applications such as tissue engineering.
more »
« less
- Award ID(s):
- 1659796
- PAR ID:
- 10219549
- Date Published:
- Journal Name:
- Journal of Materials Research
- Volume:
- 35
- Issue:
- 10
- ISSN:
- 0884-2914
- Page Range / eLocation ID:
- 1227 to 1235
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this research study, the fracture strength of flat 10 mm thick annealed glass sheets having an abrasive water-jet cut surface and bearing against a transparent interface material is experimentally investigated. The transparent interface material is necessary to provide axial-compressive force continuity in modular compression-dominant all- glass shell structures. A series of short glass columns were tested in axial compression under a variety of load cases, which included cyclic, creep, and monotonic-to-fracture loading. A target glass fracture bearing stress of 36.6 MPa is identified and represents an upper bound bearing stress for annealed glass compression members failing in a flexural buckling mode. The study concludes the transparent thermoplastic material, known as Surlyn, was able to achieve a fracture strength that exceeds the target value and that the fracture strength is not affected by cyclic or creep loading. Consequently, column-related failure limit states will occur before glass fracture is associated with interface bearing. Glass fracture occurs in Type-I mode, reflecting the presence of interface tensile stress. Furthermore, the monotonic bearing stiffness in the service range of 5 to 15 MPa is increased by 20 % and 16 % for samples subjected to cyclic and creep loading, respectively, relative to monotonic-only samples.more » « less
-
Abstract The incorporation of a secondary network into traditional single‐network hydrogels can enhance mechanical properties, such as toughness and loading to failure. These features are important for many applications, including as biomedical materials; however, the processing of interpenetrating polymer network (IPN) hydrogels is often limited by their multistep fabrication procedures. Here, a one‐pot scheme for the synthesis of biopolymer IPN hydrogels mediated by the simultaneous crosslinking of two independent networks with light, namely: i) free‐radical crosslinking of methacrylate‐modified hyaluronic acid (HA) to form the primary network and ii) thiol–ene crosslinking of norbornene‐modified HA with thiolated guest–host assemblies of adamantane and β‐cyclodextrin to form the secondary network, is reported. The mechanical properties of the IPN hydrogels are tuned by changing the network composition, with high water content (≈94%) hydrogels exhibiting excellent work of fracture, tensile strength, and low hysteresis. As proof‐of‐concept, the IPN hydrogels are implemented as low‐viscosity Digital Light Processing resins to fabricate complex structures that recover shape upon loading, as well as in microfluidic devices to form deformable microparticles. Further, the IPNs are cytocompatible with cell adhesion dependent on the inclusion of adhesive peptides. Overall, the enhanced processing of these IPN hydrogels will expand their utility across applications.more » « less
-
Abstract Dynamic hydrogel crosslinking captures network reorganization and self‐healing of natural materials, yet is often accompanied by reduced mechanical properties compared to covalent analogs. Toughening is possible in certain materials with processing by directional freeze‐casting and salting‐out, producing hierarchically organized networks with directionally enhanced mechanical properties. The implications of including dynamic supramolecular crosslinking alongside such processes are unclear. Here, a supramolecular hydrogel prepared from homoternary crosslinking by pendant guests with a free macrocycle is subsequently processed by directional freeze‐casting and salting‐out. The resulting hydrogels tolerate multiple cycles of compression. Excitingly, supramolecular affinity dictates the mechanical properties of the bulk hydrogels, with higher affinity interactions producing materials with higher Young's modulus and enhanced toughness under compression. The importance of supramolecular crosslinking is emphasized with a supramolecular complex that is converted in situ into a covalent crosslink. While supramolecular hydrogels do not fracture and spontaneously self‐heal when cut, their covalent analogs fracture under moderate strain and do not self‐heal. This work shows a molecular‐scale origin of bulk hydrogel toughening attributed to affinity and dynamics of supramolecular crosslinking, offering synergy in combination with bulk post‐processing techniques to yield materials with enhanced mechanical properties tunable at the molecular scale for the needs of specific applications.more » « less
-
Understanding bone strength is important when assessing bone diseases and their treatment. Bending experiments are often used to determine strength. Then, flexural stresses are calculated from elastic bending theory. With a brittle failure criterion, the maximum flexural tensile stress is equated to (nominal) strength. However, bone is not a perfectly brittle material. A quasi-brittle failure criterion is more appropriate. Such an approach allows for material failure to occur before full fracture. The extent of the subcritical damage domain then introduces a length scale. The intrinsic strength of the bone is calculated from the critical load at fracture and the failure process zone dimensions relative to the specimen size. We apply this approach to human cortical bone specimens extracted from a femur. We determine strength measures in the untreated reference state and after treatment with the selective estrogen receptor modulator raloxifene. We find that the common nominal strength measure does not distinguish between treatments. However, the dimensions of the failure process zone differ between treatments. Intrinsic strength measures then are demonstrated as descriptors of bone strength sensitive to treatment. An extrapolation of laboratory data to whole bone is demonstrated.more » « less
An official website of the United States government

