skip to main content


Title: DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features
Data-driven discovery of cancer driver genes, including tumor suppressor genes (TSGs) and oncogenes (OGs), is imperative for cancer prevention, diagnosis, and treatment. Although epigenetic alterations are important for tumor initiation and progression, most known driver genes were identified based on genetic alterations alone. Here, we developed an algorithm, DORGE (Discovery of Oncogenes and tumor suppressoR genes using Genetic and Epigenetic features), to identify TSGs and OGs by integrating comprehensive genetic and epigenetic data. DORGE identified histone modifications as strong predictors for TSGs, and it found missense mutations, super enhancers, and methylation differences as strong predictors for OGs. We extensively validated DORGE-predicted cancer driver genes using independent functional genomics data. We also found that DORGE-predicted dual-functional genes (both TSGs and OGs) are enriched at hubs in protein-protein interaction and drug-gene networks. Overall, our study has deepened the understanding of epigenetic mechanisms in tumorigenesis and revealed previously undetected cancer driver genes.  more » « less
Award ID(s):
1846216
NSF-PAR ID:
10219958
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
46
ISSN:
2375-2548
Page Range / eLocation ID:
eaba6784
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The discovery of cancer driver mutations is a fundamental goal in cancer research. While many cancer driver mutations have been discovered in the protein-coding genome, research into potential cancer drivers in the non-coding regions showed limited success so far. Here, we present a novel comprehensive framework Dr.Nod for detection of non-coding cis-regulatory candidate driver mutations that are associated with dysregulated gene expression using tissue-matched enhancer-gene annotations. Applying the framework to data from over 1500 tumours across eight tissues revealed a 4.4-fold enrichment of candidate driver mutations in regulatory regions of known cancer driver genes. An overarching conclusion that emerges is that the non-coding driver mutations contribute to cancer by significantly altering transcription factor binding sites, leading to upregulation of tissue-matched oncogenes and down-regulation of tumour-suppressor genes. Interestingly, more than half of the detected cancer-promoting non-coding regulatory driver mutations are over 20 kb distant from the cancer-associated genes they regulate. Our results show the importance of tissue-matched enhancer-gene maps, functional impact of mutations, and complex background mutagenesis model for the prediction of non-coding regulatory drivers. In conclusion, our study demonstrates that non-coding mutations in enhancers play a previously underappreciated role in cancer and dysregulation of clinically relevant target genes.

     
    more » « less
  2. Abstract Background

    Three genes clustered together on chromosome 12 comprise a group of hydroxycarboxylic acid receptors (HCARs):HCAR1,HCAR2, andHCAR3. These paralogous genes encode different G-protein coupled receptors responsible for detecting glycolytic metabolites and controlling fatty acid oxidation. Though better known for regulating lipid metabolism in adipocytes, more recently, HCARs have been functionally associated with breast cancer proliferation/survival;HCAR2has been described as a tumor suppressor andHCAR1andHCAR3as oncogenes. Thus, we sought to identify germline variants inHCAR1,HCAR2,andHCAR3that could potentially be associated with breast cancer risk.

    Methods

    Two different cohorts of breast cancer cases were investigated, the Alabama Hereditary Cancer Cohort and The Cancer Genome Atlas, which were analyzed through nested PCRs/Sanger sequencing and whole-exome sequencing, respectively. All datasets were screened for rare, non-synonymous coding variants.

    Results

    Variants were identified in both breast cancer cohorts, some of which appeared to be associated with breast cancer BC risk, includingHCAR1c.58C > G (p.P20A),HCAR2c.424C > T (p.R142W),HCAR2c.517_518delinsAC (p.G173T),HCAR2c.1036A > G (p.M346V),HCAR2c.1086_1090del (p.P363Nfs*26),HCAR3c.560G > A (p.R187Q), andHCAR3c.1117delC (p.Q373Kfs*82). Additionally,HCAR2c.515C > T (p.S172L), a previously identified loss-of-function variant, was identified.

    Conclusions

    Due to the important role of HCARs in breast cancer, it is vital to understand how these genetic variants play a role in breast cancer risk and proliferation and their consequences on treatment strategies. Additional studies will be needed to validate these findings. Nevertheless, the identification of these potentially pathogenic variants supports the need to investigate their functional consequences.

     
    more » « less
  3. Abstract <p>Beyond the most common oncogenes activated by mutation (mut-drivers), there likely exists a variety of low-frequency mut-drivers, each of which is a possible frontier for targeted therapy. To identify new and understudied mut-drivers, we developed a machine learning (ML) model that integrates curated clinical cancer data and posttranslational modification (PTM) proteomics databases. We applied the approach to 62,746 patient cancers spanning 84 cancer types and predicted 3,964 oncogenic mutations across 1,148 genes, many of which disrupt PTMs of known and unknown function. The list of putative mut-drivers includes established drivers and others with poorly understood roles in cancer. This ML model is available as a web application. As a case study, we focused the approach on nonreceptor tyrosine kinases (NRTK) and found a recurrent mutation in activated CDC42 kinase-1 (ACK1) that disrupts the Mig6 homology region (MHR) and ubiquitin-association (UBA) domains on the ACK1 C-terminus. By studying these domains in cultured cells, we found that disruption of the MHR domain helps activate the kinase while disruption of the UBA increases kinase stability by blocking its lysosomal degradation. This ACK1 mutation is analogous to lymphoma-associated mutations in its sister kinase, TNK1, which also disrupt a C-terminal inhibitory motif and UBA domain. This study establishes a mut-driver discovery tool for the research community and identifies a mechanism of ACK1 hyperactivation shared among ACK family kinases.</p></sec> <sec><title>Implications:

    This research identifies a potentially targetable activating mutation in ACK1 and other possible oncogenic mutations, including PTM-disrupting mutations, for further study.

     
    more » « less
  4. The majority of lung cancer patients are diagnosed with metastatic disease. This study identified a set of 73 microRNAs (miRNAs) that classified lung cancer tumors from normal lung tissues with an overall accuracy of 96.3% in the training patient cohort (n = 109) and 91.7% in unsupervised classification and 92.3% in supervised classification in the validation set (n = 375). Based on association with patient survival (n = 1016), 10 miRNAs were identified as potential tumor suppressors (hsa-miR-144, hsa-miR-195, hsa-miR-223, hsa-miR-30a, hsa-miR-30b, hsa-miR-30d, hsa-miR-335, hsa-miR-363, hsa-miR-451, and hsa-miR-99a), and 4 were identified as potential oncogenes (hsa-miR-21, hsa-miR-31, hsa-miR-411, and hsa-miR-494) in lung cancer. Experimentally confirmed target genes were identified for the 73 diagnostic miRNAs, from which proliferation genes were selected from CRISPR-Cas9/RNA interference (RNAi) screening assays. Pansensitive and panresistant genes to 21 NCCN-recommended drugs with concordant mRNA and protein expression were identified. DGKE and WDR47 were found with significant associations with responses to both systemic therapies and radiotherapy in lung cancer. Based on our identified miRNA-regulated molecular machinery, an inhibitor of PDK1/Akt BX-912, an anthracycline antibiotic daunorubicin, and a multi-targeted protein kinase inhibitor midostaurin were discovered as potential repositioning drugs for treating lung cancer. These findings have implications for improving lung cancer diagnosis, optimizing treatment selection, and discovering new drug options for better patient outcomes.

     
    more » « less
  5. Abstract

    Breast cancer accounts for the highest cancer cases globally, with 12% of occurrences progressing to metastatic breast cancer with a low survival rate and limited effective early intervention strategies augmented by late diagnosis. Moreover, a low concentration of prognostic and predictive markers hinders disease monitoring. Circulating and exosomal microRNAs (miRNAs) have recently shown a considerable interplay in breast cancer, standing out as effective diagnostic and prognostic markers. The primary functions are as gene regulatory agents at the genetic and epigenetic levels. An array of dysregulated miRNAs stimulates cancer‐promoting mechanisms, activating oncogenes and controlling tumor‐suppressing genes and mechanisms. Exosomes are vastly studied extracellular vesicles, carrying, and transporting cargo, including noncoding RNAs with premier roles in oncogenesis. Translocation of miRNAs from the circulation to exosomes, with RNA‐binding proteins in stress‐induced conditions, has shown significant cooperation in function to promote breast cancer. This review examines cellular and exosomal miRNA biogenesis and loading, the clinical implications of their dysregulation, their function in diagnosis, prognosis, and prediction of breast cancer, and in regulating cancer signaling pathways. The influence of cellular and exosomal miRNAs presents clinical significance on breast cancer diagnosis, subtyping, staging, prediction, and disease monitoring during treatment, hence a potent marker for breast cancer.

     
    more » « less