skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GUI-focused overviews of mobile development videos
The need for mobile applications and mobile programming is increasing due to the continuous rise in the pervasiveness of mobile devices. Developers often refer to video programming tutorials to learn more about mobile programming topics. To find the right video to watch, developers typically skim over several videos, looking at their title, description, and video content in order to determine if they are relevant to their information needs. Unfortunately, the title and description do not always provide an accurate overview, and skimming over videos is time-consuming and can lead to missing important information. We propose a novel approach that locates and extracts the GUI screens showcased in a video tutorial, then selects and displays the most representative ones to provide a GUI-focused overview of the video. We believe this overview can be used by developers as an additional source of information for determining if a video contains the information they need. To evaluate our approach, we performed an empirical study on iOS and Android programming screencasts which investigates the accuracy of our automated GUI extraction. The results reveal that our approach can detect and extract GUI screens with an accuracy of 94%.  more » « less
Award ID(s):
1846142
PAR ID:
10220035
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings
Page Range / eLocation ID:
314 to 315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mobile applications demand is on the rise, leading to more programmers learning to develop or having to maintain this kind of programs. Developers often refer to online resources to find inspiration or answers to questions they have about mobile programming topics and screencasts are a popular resource. However, given the multitude of screencasts available, it can be difficult to quickly comprehend which of the many videos is relevant to one's needs. We propose a novel approach, called UIScreens, which detects, extracts, and presents the most representative user interface (UI) screens embedded in mobile development screencasts. This could help developers quickly comprehend what an app displayed in a video is about, therefore saving time searching for useful videos. UIScreens has been evaluated in two empirical studies on iOS and Android programming screencasts. The first study investigates the accuracy of our UI extraction and shows that our approach is able to detect and extract UI screens with an accuracy of 94%. The second is a user study with mobile app developers, who evaluated both the accuracy and the usefulness of UIScreens. They agreed that UIScreens is accurate and extracts representative UI screens from videos. They considered that the extracted UI screens are useful for understanding what a video is about and if it is relevant to a search. Our approach has been implemented as a free online tool. 
    more » « less
  2. null (Ed.)
    Mobile apps are one of the most widely used types of software systems in existence today and more programmers and students learn how to develop them everyday. One of the most popular resources for learning mobile programming are videos hosted on social platforms such as YouTube. While useful, this type of resource has also its limitations, especially when developers are looking for user interface (UI) designs for mobile applications, since these are hard to search for and locate in videos. We propose UIScreens, a web-based analysis and search engine that analyzes the visual contents of mobile programming video tutorials, then identifies and extracts the UI screens displayed in the videos. Our tool offers features such as searching for UI screens in videos, displaying an overview of the UI screens identified in a video under each search result, and navigating to the part of a video where a particular UI screen is being displayed and discussed. In a user study, participants agreed that UIScreens is usable and useful to quickly skim through videos, while the UI screens it extracts can help developers further determine the relevance of videos to a search topic. 
    more » « less
  3. The large demand of mobile devices creates significant concerns about the quality of mobile applications (apps). Developers need to guarantee the quality of mobile apps before it is released to the market. There have been many approaches using different strategies to test the GUI of mobile apps. However, they still need improvement due to their limited effectiveness. In this article, we propose DinoDroid, an approach based on deep Q-networks to automate testing of Android apps. DinoDroid learns a behavior model from a set of existing apps and the learned model can be used to explore and generate tests for new apps. DinoDroid is able to capture the fine-grained details of GUI events (e.g., the content of GUI widgets) and use them as features that are fed into deep neural network, which acts as the agent to guide app exploration. DinoDroid automatically adapts the learned model during the exploration without the need of any modeling strategies or pre-defined rules. We conduct experiments on 64 open-source Android apps. The results showed that DinoDroid outperforms existing Android testing tools in terms of code coverage and bug detection. 
    more » « less
  4. Video and animation are common ways of delivering concepts that cannot be easily communicated through text. This visual information is often inaccessible to blind and visually impaired people, and alternative representations such as Braille and audio may leave out important details. Audio-haptic displays with along with supplemental descriptions allow for the presentation of complex spatial information, along with accompanying description. We introduce the Haptic Video Player, a system for authoring and presenting audio-haptic content from videos. The Haptic Video Player presents video using mobile robots that can be touched as they move over a touch screen. We describe the design of the Haptic Video Player system, and present user studies with educators and blind individuals that demonstrate the ability of this system to render dynamic visual content non-visually. 
    more » « less
  5. The large demand of mobile devices creates significant concerns about the quality of mobile applications (apps). Developers heavily rely on bug reports in issue tracking systems to reproduce failures (e.g., crashes). However, the process of crash reproduction is often manually done by developers, making the resolution of bugs inefficient, especially given that bug reports are often written in natural language. To improve the productivity of developers in resolving bug reports, in this paper, we introduce a novel approach, called ReCDroid+, that can automatically reproduce crashes from bug reports for Android apps. ReCDroid+ uses a combination of natural language processing (NLP) , deep learning, and dynamic GUI exploration to synthesize event sequences with the goal of reproducing the reported crash. We have evaluated ReCDroid+ on 66 original bug reports from 37 Android apps. The results show that ReCDroid+ successfully reproduced 42 crashes (63.6% success rate) directly from the textual description of the manually reproduced bug reports. A user study involving 12 participants demonstrates that ReCDroid+ can improve the productivity of developers when resolving crash bug reports. 
    more » « less