skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parameterized Verification of Systems with Global Synchronization and Guards
Inspired by distributed applications that use consensus or other agreement protocols for global coordination, we define a new computational model for parameterized systems that is based on a general global synchronization primitive and allows for global transition guards. Our model generalizes many existing models in the literature, including broadcast protocols and guarded protocols. We show that reachability properties are decidable for systems without guards, and give sufficient conditions under which they remain decidable in the presence of guards. Furthermore, we investigate cutoffs for reachability properties and provide sufficient conditions for small cutoffs in a number of cases that are inspired by our target applications  more » « less
Award ID(s):
1846327
PAR ID:
10220421
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Lahiri, Shuvendu; Wang, Chao
Date Published:
Journal Name:
Computer Aided Verification
Page Range / eLocation ID:
299--323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents Verisig, a hybrid system approach to verifying safety properties of closed-loop systems using neural networks as controllers. We focus on sigmoid-based networks and exploit the fact that the sigmoid is the solution to a quadratic differential equation, which allows us to transform the neural network into an equivalent hybrid system. By composing the network's hybrid system with the plant's, we transform the problem into a hybrid system verification problem which can be solved using state-of-the-art reachability tools. We show that reachability is decidable for networks with one hidden layer and decidable for general networks if Schanuel's conjecture is true. We evaluate the applicability and scalability of Verisig in two case studies, one from reinforcement learning and one in which the neural network is used to approximate a model predictive controller. 
    more » « less
  2. Distributed agreement-based (DAB) systems use common distributed agreement protocols such as leader election and consensus as building blocks for their target functionality. While automated verification for DAB systems is undecidable in general, recent work identifies a large class of DAB systems for which verification is efficiently-decidable. Unfortunately, the conditions characterizing such a class can be opaque and non-intuitive, and can pose a significant challenge to system designers trying to model their systems in this class. In this paper, we present a synthesis-driven tool, CINNABAR, to help system designers building DAB systems ensure that their intended designs belong to an efficiently-decidable class. In particular, starting from an initial sketch provided by the designer, CINNABAR generates sketch completions using a counterexample-guided procedure. The core technique relies on compactly encoding root-causes of counterexamples to varied properties such as efficient-decidability and safety. We demonstrate CINNABAR ’s effectiveness by successfully and efficiently synthesizing completions for a variety of interesting DAB systems including a distributed key-value store and a distributed consortium system. 
    more » « less
  3. Multiparty session types (MSTs) are a type-based approach to verifying communication protocols, represented as global types in the framework. We present a precise subtyping relation for asynchronous MSTs with communicating state machines (CSMs) as implementation model. We address two problems: when can a local implementation safely substitute another, and when does an arbitrary CSM implement a global type? We define safety with respect to a given global type, in terms of subprotocol fidelity and deadlock freedom. Our implementation model subsumes existing work which considers local types with restricted choice. We exploit the connection between MST subtyping and refinement to formulate concise conditions that are directly checkable on the candidate implementations, and use them to show that both problems are decidable in polynomial time. 
    more » « less
  4. Oshman, Rotem (Ed.)
    Byzantine quorum systems provide higher throughput than proof-of-work and incur modest energy consumption. Further, their modern incarnations incorporate personalized and heterogeneous trust. Thus, they are emerging as an appealing candidate for global financial infrastructure. However, since their quorums are not uniform across processes anymore, the properties that they should maintain to support abstractions such as reliable broadcast and consensus are not well-understood. It has been shown that the two properties quorum intersection and availability are necessary. In this paper, we prove that they are not sufficient. We then define the notion of quorum subsumption, and show that the three conditions together are sufficient: we present reliable broadcast and consensus protocols, and prove their correctness for quorum systems that provide the three properties. 
    more » « less
  5. The last decade has sparked several valiant efforts in deductive verification of distributed agreement protocols such as consensus and leader election. Oddly, there have been far fewer verification efforts that go beyond the core protocols and target applications that are built on top of agreement protocols. This is unfortunate, as agreement-based distributed services such as data stores, locks, and ledgers are ubiquitous and potentially permit modular, scalable verification approaches that mimic their modular design. We address this need for verification of distributed agreement-based systems through our novel modeling and verification framework, QuickSilver, that is not only modular, but also fully automated. The key enabling feature of QuickSilver is our encoding of abstractions of verified agreement protocols that facilitates modular, decidable, and scalable automated verification. We demonstrate the potential of QuickSilver by modeling and efficiently verifying a series of tricky case studies, adapted from real-world applications, such as a data store, a lock service, a surveillance system, a pathfinding algorithm for mobile robots, and more. 
    more » « less