skip to main content


Title: Structured micro/nano materials synthesized via electrospray: a review
The development of synthetic methods for micro/nano materials with precisely controlled structures, morphologies, and local compositions is of great importance for the advancement of modern nanotechnology. The electrospray method is a “platform” approach for the preparation of a broad range of micro-/nanostructures; electrospray is simple and scalable. This review summarizes recent research on the micro-/nanostructures prepared via the electrospray route. These include spherical structures ( e.g. simple, porous, Janus, and core–shell particles), non-spherical structures ( e.g. red blood cell-like and spindle-like particles, multi-compartment microrods, 2D holey nanosheets, and nanopyramids), and assembled structures. The experimental details, underlying physical/chemical principles, and key benefits of these structures are comprehensively discussed. The effects and importance of nozzle design, properties of feeding solutions ( e.g. concentration of solute, polymer additives, solvent/nonsolvent combinations), working environment ( e.g. temperature and humidity), and types of collection media are highlighted.  more » « less
Award ID(s):
1845683
NSF-PAR ID:
10220439
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biomaterials Science
Volume:
8
Issue:
20
ISSN:
2047-4830
Page Range / eLocation ID:
5555 to 5573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrospray deposition (ESD) has shown great promise for manufacturing micro- and nanostructured coatings at scale on versatile substrates with complex geometries. ESD exhibits a broad spectrum of morphologies depending upon the properties of spray fluids. Among them are nanowire forests or foams obtained via the in-air gelation of electrospray droplets formed from methylcellulose (MC) solutions. In this study, we explored MC ESD loaded with nanoparticles of various shapes and uncovered the effects of particle fillers on morphology evolution using coarse-grained simulations and physical experiments. Utilizing electrostatic dissipative particle dynamics, we modeled the electrohydrodynamic deformation of particle-laden MC droplets undergoing in-flight evaporation. The simulations quantitatively predict the suppression of droplet deformation as the size or concentration of spherical nanoparticles increases. While small particles can be readily encapsulated into the nanowire body, large particles can arrest nanowire formation. The model was extended to nanoparticles with complex topologies, showing MC nanowires emerging from particle edges and vertices due to curvature-enhanced electric stress. In all cases, strong agreements were found between simulation and experimental results. These results demonstrate the efficacy of the coarse-grained model in predicting the morphology evolution of electrosprayed droplets and lay the groundwork for employing MC nanowires for developing nanostructured composites. 
    more » « less
  2. Abstract

    Polymeric particles with complex shapes are required for biomedical therapies, colloidal self‐assembly, and micro‐robotics. It has been challenging to synthesize particles beyond simple shapes (e.g., spheres, cubes) with high structural accuracy using existing methods. Here, a method for fabricating polymeric microparticles of complex 3D shapes is reported using two‐photon lithography, and dispersing the particles in an aqueous solution on a glass substrate. The fabrication of polyhedrons (e.g., tetrahedron, pyramid), polypods (e.g., tetrapod, hexapod), and other shapes of 5–10 µm in size is demonstrated. Confocal microscopy is used to track the motion of the sphere, tetrahedron, tetrapod, and screw‐shaped particles near the substrate, and determine their translational diffusion coefficients. HYDRO++ is used to simulate the motion of the particles far from the substrate. The influence of particle size and substrate effects on diffusion in the spherical particles is determined and finds that the non‐spherical particles have increased hindrance at the substrate compared to the spherical particles.

     
    more » « less
  3. Polymeric microparticles have been shown to have great impacts in the area of drug delivery, biosensing, and tissue engineering. Electrospray technology, which provides a simple yet effective technique in the creation of microparticles, was utilized in this work. In addition, altering the electrospray experimental parameters such as applied voltage, flow rate, collector distance, solvents, and the polymer-solvent mixtures can result in differences in the size and morphology of the produced microparticles. The effects of the flow rate at (0.15, 0.3, 0.45, 0.6, 0.8, and 1 mL/h) and N, N-Dimethylformamide (DMF)/acetone solvent ratios (20:80, 40:60, 60:40, 80:20, 100:0 v/v) in the production of polyvinylidene fluoride (PVDF) microparticles were studied. Scanning electron microscopy (SEM) was used to observe changes in the morphology of the microparticles, and this revealed that a higher acetone to DMF ratio produces deformed particles, while flow rates at (0.3 and 0.45 mL/h) and a more optimized DMF to acetone solvent ratio (60:40 v/v) produced uniform spherical particles. We discovered from the Raman spectroscopy results that the electrosprayed PVDF microparticles had an increase in piezoelectric β phase compared to the PVDF pellet used in making the microparticles, which in its original form is α phase dominant and non-piezoelectric. 
    more » « less
  4. Abstract

    In manufacturing industries, spherical micro-particles are commonly used as (e.g., brazing powder, metal filler, and 3D printing powder) which are produced with droplet-based particle fabrication techniques. Such processes create spherical morphology but introduce polydispersity and follow a continuous exponential pattern commonly expressed with Rosin-Rammler expression. Sorting those micro-particles in a narrower size range is an important but difficult, costly, and challenging process. Here we demonstrate the successful separation of the particles from a poly-disperse mixture with a particle volume fraction of 10% by dipping process. Nickel-based micro-particles (avg. dia. 5.69 μm) are added in a binder-based liquid carrier system. To encounter the gravitational force, external kinetic energy in the form of agitation is applied to ensure the uniform dispersion of the particles. The cylindrical substrate is prepared and dipped in the ‘pseudo suspension’ to separate the particles by adhering to it. The substrate is dried, and images are taken to characterize the separated particles using image J software. A clear size distribution can be observed which is also plotted. Additionally, a relationship between the process parameter and sorted particles has been established. The proposed method is quick, controllable, and easy to implement, which can be a useful tool for sorting wide-range poly-disperse particles.

     
    more » « less
  5. Adsorption of nanoparticles on a membrane can give rise to interactions between particles, mediated by membrane deformations, that play an important role in self-assembly and membrane remodeling. Previous theoretical and experimental research has focused on nanoparticles with fixed shapes, such as spherical, rod-like, and curved nanoparticles. Recently, hinge-like DNA origami nanostructures have been designed with tunable mechanical properties. Inspired by this, we investigate the equilibrium properties of hinge-like particles adsorbed on an elastic membrane using Monte Carlo and umbrella sampling simulations. The configurations of an isolated particle are influenced by competition between bending energies of the membrane and the particle, which can be controlled by changing adsorption strength and hinge stiffness. When two adsorbed particles interact, they effectively repel one another when the strength of adhesion to the membrane is weak. However, a strong adhesive interaction induces an effective attraction between the particles, which drives their aggregation. The configurations of the aggregate can be tuned by adjusting the hinge stiffness: tip-to-tip aggregation occurs for flexible hinges, whereas tip-to-middle aggregation also occurs for stiffer hinges. Our results highlight the potential for using the mechanical features of deformable nanoparticles to influence their self-assembly when the particles and membrane mutually influence one another. 
    more » « less