skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robot Action Selection Learning via Layered Dimension Informed Program Synthesis
Action selection policies (ASPs), used to compose low-level robot skills into complex high-level tasks are commonly represented as neural networks (NNs) in the state of the art. Such a paradigm, while very effective, suffers from a few key problems: 1) NNs are opaque to the user and hence not amenable to verification, 2) they require significant amounts of training data, and 3) they are hard to repair when the domain changes. We present two key insights about ASPs for robotics. First, ASPs need to reason about physically meaningful quantities derived from the state of the world, and second, there exists a layered structure for composing these policies. Leveraging these insights, we introduce layered dimension-informed program synthesis (LDIPS) - by reasoning about the physical dimensions of state variables, and dimensional constraints on operators, LDIPS directly synthesizes ASPs in a human-interpretable domain-specific language that is amenable to program repair. We present empirical results to demonstrate that LDIPS 1) can synthesize effective ASPs for robot soccer and autonomous driving domains, 2) requires two orders of magnitude fewer training examples than a comparable NN representation, and 3) can repair the synthesized ASPs with only a small number of corrections when transferring from simulation to real robots.  more » « less
Award ID(s):
2102291
PAR ID:
10220883
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Conference on Robot Learning (CoRL)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Action selection policies (ASPs), used to compose low-level robot skills into complex high-level tasks are commonly represented as neural networks (NNs) in the state of the art. Such a paradigm, while very effective, suffers from a few key problems: 1) NNs are opaque to the user and hence not amenable to verification, 2) they require significant amounts of training data, and 3) they are hard to repair when the domain changes. We present two key insights about ASPs for robotics. First, ASPs need to reason about physically meaningful quantities derived from the state of the world, and second, there exists a layered structure for composing these policies. Leveraging these insights, we introduce layered dimension-informed program synthesis (LDIPS) – by reasoning about the physical dimensions of state variables, and dimensional constraints on operators, LDIPS directly synthesizes ASPs in a human-interpretable domain-specific language that is amenable to program repair. We present empirical results to demonstrate that LDIPS 1) can synthesize effective ASPs for robot soccer and autonomous driving domains, 2) enables tractable synthesis for robot action selection policies not possible with state of the art synthesis techniques, 3) requires two orders of magnitude fewer training examples than a comparable NN representation, and 4) can repair the synthesized ASPs with only a small number of corrections when transferring from simulation to real robots. 
    more » « less
  2. Robot social navigation is influenced by human preferences and environment-specific scenarios such as elevators and doors, thus necessitating end-user adaptability. State-of-the-art approaches to social navigation fall into two categories: model-based social constraints and learning-based approaches. While effective, these approaches have fundamental limitations – model-based approaches require constraint and parameter tuning to adapt to preferences and new scenarios, while learning-based approaches require reward functions, significant training data, and are hard to adapt to new social scenarios or new domains with limited demonstrations.In this work, we propose Iterative Dimension Informed Program Synthesis (IDIPS) to address these limitations by learning and adapting social navigation in the form of human-readable symbolic programs. IDIPS works by combining pro-gram synthesis, parameter optimization, predicate repair, and iterative human demonstration to learn and adapt model-free action selection policies from orders of magnitude less data than learning-based approaches. We introduce a novel predicate repair technique that can accommodate previously unseen social scenarios or preferences by growing existing policies.We present experimental results showing that IDIPS: 1) synthesizes effective policies that model user preference, 2) can adapt existing policies to changing preferences, 3) can extend policies to handle novel social scenarios such as locked doors, and 4) generates policies that can be transferred from simulation to real-world robots with minimal effort. 
    more » « less
  3. This paper presents CirFix, a framework for automatically repairing defects in hardware designs implemented in languages like Verilog. We propose a novel fault localization approach based on assignments to wires and registers, and a fitness function tailored to the hardware domain to bridge the gap between software-level automated program repair and hardware descriptions. We also present a benchmark suite of 32 defect scenarios corresponding to a variety of hardware projects. Overall, CirFix produces plausible repairs for 21/32 and correct repairs for 16/32 of the defect scenarios. This repair rate is comparable to that of successful program repair approaches for software, indicating CirFix is effective at bringing over the benefits of automated program repair to the hardware domain for the first time. 
    more » « less
  4. An increasingly popular machine learning paradigm is to pretrain a neural network (NN) on many tasks offline, then adapt it to downstream tasks, often by re-training only the last linear layer of the network. This approach yields strong downstream performance in a variety of contexts, demonstrating that multitask pretraining leads to effective feature learning. Although several recent theoretical studies have shown that shallow NNs learn meaningful features when either (i) they are trained on a single task or (ii) they are linear, very little is known about the closer-to-practice case of nonlinear NNs trained on multiple tasks. In this work, we present the first results proving that feature learning occurs during training with a nonlinear model on multiple tasks. Our key insight is that multi-task pretraining induces a pseudo-contrastive loss that favors representations that align points that typically have the same label across tasks. Using this observation, we show that when the tasks are binary classification tasks with labels depending on the projection of the data onto an r-dimensional subspace within the d k r-dimensional input space, a simple gradient-based multitask learning algorithm on a two-layer ReLU NN recovers this projection, allowing for generalization to downstream tasks with sample and neuron complexity independent of d. In contrast, we show that with high probability over the draw of a single task, training on this single task cannot guarantee to learn all r ground-truth features. 
    more » « less
  5. An increasingly popular machine learning paradigm is to pretrain a neural network (NN) on many tasks offline, then adapt it to downstream tasks, often by re-training only the last linear layer of the network. This approach yields strong downstream performance in a variety of contexts, demonstrating that multitask pretraining leads to effective feature learning. Although several recent theoretical studies have shown that shallow NNs learn meaningful features when either (i) they are trained on a single task or (ii) they are linear, very little is known about the closer-to-practice case of nonlinear NNs trained on multiple tasks. In this work, we present the first results proving that feature learning occurs during training with a nonlinear model on multiple tasks. Our key insight is that multi-task pretraining induces a pseudo-contrastive loss that favors representations that align points that typically have the same label across tasks. Using this observation, we show that when the tasks are binary classification tasks with labels depending on the projection of the data onto an 𝑟-dimensional subspace within the 𝑑 ≫𝑟-dimensional input space, a simple gradient-based multitask learning algorithm on a two-layer ReLU NN recovers this projection, allowing for generalization to downstream tasks with sample and neuron complexity independent of 𝑑. In contrast, we show that with high probability over the draw of a single task, training on this single task cannot guarantee to learn all 𝑟 ground-truth features. 
    more » « less