skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biomolecular corona formation on CuO nanoparticles in plant xylem fluid
Biomolecular coatings (coronas) that form on nanomaterials have been widely investigated in animal and bacterial cell culture and in the extracellular and intracellular fluids of animals. Such coronas influence the distribution of nanoparticles within organisms, their uptake by cells, and their storage in intracellular compartments. Plants can be exposed to nanoparticles via either intentional application of nanomaterials in agriculture or inadvertently due, for example, to biosolids amendment of soils. Development of a mechanistic understanding of nanoparticle transport and fate within plants requires consideration of corona acquisition within plants, particularly within the vascular fluids that transport nanoparticles throughout plants. Here, we examine the interactions between copper oxide (CuO) nanoparticles and pumpkin xylem fluid to understand corona formation in an important part of the plant vasculature system. We used CuO nanoparticles because they have emerged as a promising micronutrient source for the suppression of fungal diseases. The corona was composed primarily of proteins, despite the higher abundance of carbohydrates in xylem fluid. We used X-ray photoelectron spectroscopy to determine the thickness of the protein corona. Polyacrylamide gel electrophoresis revealed that protein binding to the CuO nanoparticle surface was selective; the most abundant proteins in the corona were not the most abundant ones in the xylem fluid. We used in situ attenuated total reflectance Fourier-transform infrared spectroscopy to show that the protein–CuO NP interactions were quasi-irreversible, while carbohydrate–CuO interactions were reversible. Corona formation is expected to influence the distribution and transformation of nanomaterials in plants.  more » « less
Award ID(s):
2001611
PAR ID:
10220890
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Nano
ISSN:
2051-8153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interaction between lipid nanoparticles (LNPs) and serum proteins, giving rise to a unique identification in the form of the protein corona, has been shown to be associated with novel recognition by cell receptors. The presence of the corona enveloping the nanoparticle strongly affects the interplay with immune cells. The immune responses mediated by protein corona can affect nanoparticle toxicity and targeting capabilities. But the intracellular signaling of LNPs after corona formation resulting in the change of nanoparticles’ ability to provoke immune responses remains unclear. Therefore, a more systematic and delineated approach must be considered to present the correlation between corona complexes and the shift in nanoparticle immunogenicity. Here, we studied and reported the inhibiting effect of the absorbed proteins on the LNPs on the NLRP3 inflammasome activation, a key intracellular protein complex that modulates several inflammatory responses. Ionizable lipid as a component of LNP was observed to play an important role in modulating the activation of NLRP3 inflammasome in serum-free conditions. However, in the presence of serum proteins, the corona layer on LNPs caused a significant reduction in the inflammasome activation. Reduction in the lysosomal rupture after treatment with corona-LNPs significantly reduced inflammasome activation. Furthermore, a strong reduction of cellular uptake in macrophages after the corona formation was observed. On inspecting the uptake mechanisms in macrophages using transport inhibitors, lipid formulation was found to play a critical role in determining the endocytic pathways for the LNPs in macrophages. This study highlights the need to critically analyze the protein interactions with nanomaterials and their concomitant adaptability with immune cells to evaluate nano–bio surfaces and successfully design nanomaterials for biological applications. 
    more » « less
  2. Nanomaterials acquire a biomolecular corona upon introduction to biological media, leading to biological transformations such as changes in protein function, unmasking of epitopes, and protein fibrilization. Ex vivo studies to investigate the effect of nanoparticles on protein–protein interactions are typically performed in buffer and are rarely measured quantitatively in live cells. Here, we measure the differential effect of silica nanoparticles on protein association in vitro vs. in mammalian cells. BtubA and BtubB are a pair of bacterial tubulin proteins identified inProsthecobacterstrains that self-assemble like eukaryotic tubulin, first into dimers and then into microtubules in vitro or in vivo. Förster resonance energy transfer labeling of each of the Btub monomers with a donor (mEGFP) and acceptor (mRuby3) fluorescent protein provides a quantitative tool to measure their binding interactions in the presence of unfunctionalized silica nanoparticles in buffer and in cells using fluorescence spectroscopy and microscopy. We show that silica nanoparticles enhance BtubAB dimerization in buffer due to protein corona formation. However, these nanoparticles have little effect on bacterial tubulin self-assembly in the complex mammalian cellular environment. Thus, the effect of nanomaterials on protein–protein interactions may not be readily translated from the test tube to the cell in the absence of particle surface functionalization that can enable targeted protein–nanoparticle interactions to withstand competitive binding in the nanoparticle corona from other biomolecules. 
    more » « less
  3. Abstract Robust characterization of the protein corona—the layer of proteins that spontaneously forms on the surface of nanoparticles immersed in biological fluids—is vital for prediction of the safety, biodistribution, and diagnostic/therapeutic efficacy of nanomedicines. Protein corona identity and abundance characterization is entirely dependent on liquid chromatography coupled to mass spectroscopy (LC-MS/MS), though the variability of this technique for the purpose of protein corona characterization remains poorly understood. Here we investigate the variability of LC-MS/MS workflows in analysis of identical aliquots of protein coronas by sending them to different proteomics core-facilities and analyzing the retrieved datasets. While the shared data between the cores correlate well, there is considerable heterogeneity in the data retrieved from different cores. Specifically, out of 4022 identified unique proteins, only 73 (1.8%) are shared across the core facilities providing semiquantitative analysis. These findings suggest that protein corona datasets cannot be easily compared across independent studies and more broadly compromise the interpretation of protein corona research, with implications in biomarker discovery as well as the safety and efficacy of our nanoscale biotechnologies. 
    more » « less
  4. null (Ed.)
    Gold nanoparticles (AuNPs) are now being used in such areas as diagnostics, drug delivery, and biological sensing. In these applications, AuNPs are frequently exposed to biological fluids. These fluids contain many different proteins, any of which may interfere with the intended function of the nanoparticle. In this work, we examine the thermodynamic consequences of proteinnanoparticle binding using a combined spectroscopic and calorimetric approach. We monitored binding using UV-Vis spectroscopy, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Six proteins were studied based on their differing chemical properties, and both 15 nm and 30 nm citrate-coated AuNPs were investigated. We interpreted the UV-Vis data using two different models: the commonly-used Langmuir isotherm model and a more complex mass transport model. Both models can be used to determine Kd values for the 30 nm AuNP data; however, the mass transport model is more appropriate for 15 nm AuNPs. This is because, when fitting the Langmuir model, it is commonly assumed that most proteins are not surface-associated, and this assumption fails for 15 nm AuNPs. The DSC thermograms show two transitions for a globular protein adsorbed to a 15 nm AuNP: one high-temperature transition that is similar to global protein unfolding (68 C), and one low-temperature transition that may correspond to unfolding at the surface (56 C). Conversely, ITC experiments show no net heat of adsorption for GB3, even at high protein/AuNP concentrations. Together, the spectroscopic and calorimetric data suggest a complex, multi-step process for protein-nanoparticle adsorption. Moreover, for the proteins studied, both AuNP curvature and protein chemistry contribute to protein adsorption, with proteins generally binding more weakly to the larger nanoparticles. In the future, this work may lead to principles for improving the design of AuNPbased therapeutics and sensors. 
    more » « less
  5. The spontaneous formation of a protein corona on a nanoparticle surface influences the physiological success or failure of the synthetic nanoparticle as a drug carrier or imaging agent used in vivo . A quantitative understanding of protein-nanoparticle interactions is therefore critical for the development of nanoparticle-based therapeutics. In this perspective, we briefly discuss the challenges and limitations of current approaches used for studying protein-nanoparticle binding in a realistic biological medium. Subsequently, we demonstrate that solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to monitor protein competitive binding in a complex serum medium in situ . Importantly, when many serum proteins are competing for a gold nanoparticle (AuNP) surface, solution NMR is able to detect differences in binding thermodynamics, and kinetics of a tagged protein. Combined with other experimental approaches, solution NMR is an invaluable tool to understand protein behavior in the nanoparticle corona. 
    more » « less