Two-dimensional (2D) ferroelectric and magnetic van der Waals materials are emerging platforms for the discovery of novel cooperative quantum phenomena and development of energy-efficient logic and memory applications as well as neuromorphic and topological computing. This review presents a comprehensive survey of the rapidly growing 2D ferroic family from the synthesis perspective, including brief introductions to the top-down and bottom-up approaches for fabricating 2D ferroic flakes, thin films, and heterostructures as well as the important characterization techniques for assessing the sample properties. We also discuss the key challenges and future directions in the field, including scalable growth, property control, sample stability, and integration with other functional materials.
A pair of stacked two-dimensional heterostructures suitably rotated with respect to each other support exotic electronic properties with interesting implications for nanoelectronics and quantum technologies. A similar paradigm can be extended to light, offering a great promise for emerging low-dimensional nanophotonic heterostructures. In this Opinion article, we discuss emerging photonic responses enabled by twisting and stacking suitably tailored nanostructures. We discuss how the multi-physics interactions of light with matter in twisted bilayers can tailor their photonic response and engineer light dispersion in extreme ways. We conclude by providing an outlook on this emerging field of research and its potential for classical and quantum light manipulation at the nanoscale.
more » « less- PAR ID:
- 10220941
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optical Materials Express
- Volume:
- 11
- Issue:
- 5
- ISSN:
- 2159-3930
- Format(s):
- Medium: X Size: Article No. 1377
- Size(s):
- Article No. 1377
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Vertically stacked van der Waals (vdW) heterostructures have introduced a unique way to engineer optical and electronic responses in multifunctional photonic and quantum devices. However, the technical challenges associated with the artificially fabricated vertical heterostructures have emerged as a bottleneck to restrict their proficient utilization, which emphasizes the necessity of exploring naturally occurring vdW heterostructures. As one type of naturally occurring vdW heterostructures, franckeite has recently attracted significant interest in optoelectronic applications, but the understanding of light–matter interactions in such layered mineral is still very limited especially in the nonlinear optical regime. Herein, the anisotropic Raman scattering and third-harmonic generation (THG) from mechanically exfoliated franckeite thin flakes are investigated. The observed highly anisotropic Raman modes and THG emission patterns originate from the low-symmetry crystal structure of franckeite induced by the lattice incommensurability between two constituent stacked layers. The thickness-dependent anisotropic THG response is further analyzed to retrieve the third-order nonlinear susceptibility for franckeite crystal. The results discussed herein not only provide new insights in engineering the nonlinear light–matter interactions in natural vdW heterostructures, but also develop a testbed for designing future miniaturized quantum photonics devices and circuits based on such heterostructures.more » « less
-
This study probes the extent to which dislocations reduce carrier lifetimes and alter growth morphology and luminescence in InAs quantum dots (QD) grown on silicon. These heterostructures are key ingredients to achieving a highly reliable monolithically integrated light source on silicon necessary for photonic‐integrated circuits. Around 20%–30% shorter carrier lifetimes are found at spatially resolved individual dislocations at room temperature using time‐resolved cathodoluminescence spectroscopy, highlighting the strong nonradiative impact of dislocations even against the three‐dimensional confinement of QDs. Beyond these direct effects of increased nonradiative recombination, it is found that misfit dislocations in the defect filter layers employed during III–V/Si growth alter the QD growth environment to induce a crosshatch‐like variation in QD emission color and intensity when the filter layer is positioned sufficiently close to the QD emitter layer. Sessile threading dislocations generate even more egregious hillock defects that also reduce emission intensities by altering layer thicknesses, as measured by transmission electron microscopy and atom probe tomography. This work presents a more complete picture of the impacts of dislocations relevant to the development of light sources for scalable silicon photonic integrated circuits.
-
Abstract The exploration of emerging quantum phenomena by stacking dissimilar atomic layered materials into van der Waals (vdW) heterostructures has driven the development of layer assembly techniques. Achieving ultralow disorder within these heterostructures is crucial for unlocking their novel physical properties. However, current fabrication methods for designer heterostructures have limitations in throughput, yield, and scalability. Over the past decade, engineering toolkits have evolved to address some of these challenges, but their adoption for fabricating designer heterostructures remains limited. In this review, an overview of these emerging engineering toolkits is provided, and examine their utility and limitations in achieving ultralow disordered heterostructures. It is hoped that the insights from this review article can help guide future research directions on advancing the fabrication process of designer heterostructures.
-
Abstract Integrated quantum photonic circuitry is an emerging topic that requires efficient coupling of quantum light sources to waveguides and optical resonators. So far, great effort is devoted to engineering on‐chip systems from 3D crystals such as diamond or gallium arsenide. In this study, room‐temperature coupling is demonstrated of quantum emitters embedded in layered hexagonal boron nitride to an on‐chip aluminum nitride waveguide. 1.35% light coupling efficiency is achieved in the device and transmission of single photons through the waveguide is demonstrated. The results serve as foundation for integrating layered materials to on‐chip components and realizing integrated quantum photonic circuitry.