skip to main content


Title: A Carbon Nanotube–Metal Oxide Hybrid Material for Visible-Blind Flexible UV-Sensor
Flexible sensors with low fabrication cost, high sensitivity, and good stability are essential for the development of smart devices for wearable electronics, soft robotics, and electronic skins. Herein, we report a nanocomposite material based on carbon nanotube and metal oxide semiconductor for ultraviolet (UV) sensing applications, and its sensing behavior. The sensors were prepared by a screen-printing process under a low-temperature curing condition. The formation of a conducting string node and a sensing node could enhance a UV sensing response, which could be attributed to the uniform mixing of functionalized multi-walled carbon nanotubes and zinc oxide nanoparticles. A fabricated device has shown a fast response time of 1.2 s and a high recovery time of 0.8 s with good mechanical stability.  more » « less
Award ID(s):
1939050
NSF-PAR ID:
10220953
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Micromachines
Volume:
11
Issue:
4
ISSN:
2072-666X
Page Range / eLocation ID:
368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wearable piezoresistive sensors are being developed as electronic skins (E‐skin) for broad applications in human physiological monitoring and soft robotics. Tactile sensors with sufficient sensitivities, durability, and large dynamic ranges are required to replicate this critical component of the somatosensory system. Multiple micro/nanostructures, materials, and sensing modalities have been reported to address this need. However, a trade‐off arises between device performance and device complexity. Inspired by the microstructure of the spinosum at the dermo epidermal junction in skin, a low‐cost, scalable, and high‐performance piezoresistive sensor is developed with high sensitivity (0.144 kPa‐1), extensive sensing range ( 0.1–15 kPa), fast response time (less than 150 ms), and excellent long‐term stability (over 1000 cycles). Furthermore, the piezoresistive functionality of the device is realized via a flexible transparent electrode (FTE) using a highly stable reduced graphene oxide self‐wrapped copper nanowire network. The developed nanowire‐based spinosum microstructured FTEs are amenable to wearable electronics applications.

     
    more » « less
  2. null (Ed.)
    Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications. 
    more » « less
  3. null (Ed.)
    Toxic gases, such as NOx, SOx, H2S and other S-containing gases, cause numerous harmful effects on human health even at very low gas concentrations. Reliable detection of various gases in low concentration is mandatory in the fields such as industrial plants, environmental monitoring, air quality assurance, automotive technologies and so on. In this paper, the recent advances in electrochemical sensors for toxic gas detections were reviewed and summarized with a focus on NO2, SO2 and H2S gas sensors. The recent progress of the detection of each of these toxic gases was categorized by the highly explored sensing materials over the past few decades. The important sensing performance parameters like sensitivity/response, response and recovery times at certain gas concentration and operating temperature for different sensor materials and structures have been summarized and tabulated to provide a thorough performance comparison. A novel metric, sensitivity per ppm/response time ratio has been calculated for each sensor in order to compare the overall sensing performance on the same reference. It is found that hybrid materials-based sensors exhibit the highest average ratio for NO2 gas sensing, whereas GaN and metal-oxide based sensors possess the highest ratio for SO2 and H2S gas sensing, respectively. Recently, significant research efforts have been made exploring new sensor materials, such as graphene and its derivatives, transition metal dichalcogenides (TMDs), GaN, metal-metal oxide nanostructures, solid electrolytes and organic materials to detect the above-mentioned toxic gases. In addition, the contemporary progress in SO2 gas sensors based on zeolite and paper and H2S gas sensors based on colorimetric and metal-organic framework (MOF) structures have also been reviewed. Finally, this work reviewed the recent first principle studies on the interaction between gas molecules and novel promising materials like arsenene, borophene, blue phosphorene, GeSe monolayer and germanene. The goal is to understand the surface interaction mechanism. 
    more » « less
  4. Ion selective electrode (ISE) sensors have been broadly applied for real-time in situ monitoring of ion concentrations in water environments. However, ISE sensors suffer from critical problems, such as ionophore leaching, water-penetration, poor electrochemical stability, and resulting short life spans. In this study, a template-guided membrane matrix immobilization strategy was pursued as a novel ISE sensor fabrication methodology to enhance its sensing characteristics and longevity. Specifically, nano-porous anodized aluminum oxide (AAO) was used as the template for an NH 4 + -specific ISE sensor. A nano-porous nickel mesh eventually replaced the template and formed a compact, high-surface juncture with the NH 4 + ion-selective membrane matrix. The resulting template-guided nano-mesh ISE (TN-ISE) sensor displayed enhanced electrochemical stability ( i.e. , capacitance increased by 50%, reading drift reduced by 75%) when compared to a regular single-wall carbon nanotube (SW-CNT) ISE sensor used as the standard. The interface between the nano-mesh electrode and the ion selective membrane matrix was compact enough to prevent water influx at the electrode interface. This minimized ionophore leaching and increased the mechanical integrity of the TN-ISE sensor. The practical advantages of the novel sensor were validated via long-term (360 hours) tests in real wastewater, returning a small average error of 1.28% over this time. The results demonstrate the feasibility of the template-guided nano-mesh design and fabrication strategy toward ISEs for long-term continuous monitoring of water or wastewater quality. 
    more » « less
  5. Abstract

    A novel, highly sensitive and selective safrole sensor has been developed using quartz crystal microbalance (QCM) coated with polyvinyl acetate (PVAc) nanofibers. The nanofibers were collected on the QCM sensing surface using an electrospinning method with an average diameter ranging from 612 nm to 698 nm and relatively highQ–factors (rigid coating). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the PVAc nanofiber surface morphology, confirming its high surface area and roughness, which are beneficial in improving the sensor sensitivity compared to its thin-film counterpart. The as-spun PVAc nanofiber sensor could demonstrate a safrole limit of detection (LOD) of down to 0.7 ppm with a response time of 171 s and a sensitivity of 1.866 Hz/ppm. It also showed good reproducibility, rapid response time, and excellent recovery. Moreover, cross-interference of the QCM sensor response to non-target gases was investigated, yielding very low cross-sensitivity and high selectivity of the safrole sensor. Owing to its high robustness and low fabrication cost, this proposed sensing device is expected to be a promising alternative to classical instrumental analytical methods for monitoring safrole-based drug precursors.

     
    more » « less